International Symposium on Energy

November 21st – 22nd, Goiânia – GO, 2024

The influence of the hydrothermal treatment pH on the photoactivity of Nb₂O₅

Paulo H. H. Nunes¹, Adrielle D. Santos¹, Higor de O. Alves¹, Lucas L. Nascimento¹, Rafael

A. C. Souza³ and Antonio O. T. Patrocinio^{1,2*}

¹Laboratório de Fotoquímica e Ciência dos Materiais, LAFOT-CM Instituto de Química, Universidade Federal de Uberlândia, 38400–902, Uberlândia, MG, Brasil.

²Centro de Excelência em Hidrogênio e Tecnologias Energéticas Sustentáveis – CETHS, Parque Tecnológico Samambaia, 74690-631, Goiânia, GO, Brazil.

³faculdade De Ciências Exatas E Tecnologia–FACET, Departamento de Ciências Exatas, Universidade Federal de Grande Dourados, 79084–970, Dourados, MS, Brasil *Corresponding author. E-mail: otaviopatrocinio@ufu.br

ABSTRACT

Photocatalysis has drawn the attention of researchers worldwide as a promising sustainable approach to reduce fossil fuel dependency, thus decreasing the advance of the greenhouse effect. In this context, Nb_2O_5 is a wide bandgap semiconductor, with good synthetic versatility, as its structural and morphological parameters can be tuned with ease. In the present work, pristine Nb_2O_5 was modified by changing the pH of the hydrothermal media. The properties of the resulting materials were rationalized based on the synthesis pH, and they were tested against H_2 evolution assays, using methanol as a sacrificing agent. Only the material obtained at pH = 8 was able to produce H_2 , which was attributed to the higher incidence of structural defects induced by hydroxyl ions, allowing improved charged transfer between the photocatalyst and the Pt co-catalyst.

Keywords: Green Hydrogen; Hydrothermal treatment; Nb_2O_5 ; Niobium; Photocatalysis.

INTRODUCTION

Recent efforts to reduce global energy dependency upon fossil fuels have driven research on alternative and clean energy sources. In this scenario, solar energy is highlighted, as it has the potential to supply the whole global energy demand [1]. However, there are still challenges to be overcome to enable practical solutions for efficiently harvesting sunlight.

International Symposium on Energy

November 21st - 22nd, Goiânia - GO, 2024

Among the many techniques that can be employed to convert solar energy, photocatalysis stands out as the less complex and most cost-effective alternative [2]. Usually, this process is accomplished by semiconductor oxides, which must have suitable bandgap energy and band edge positions, high surface area and chemical stability [3]. Niobium oxide is a promising photocatalyst with similar properties when compared to TiO_2 , but with a more negative conduction band energy and lower recombination kinetics, at the cost of higher band gap energy (~3.3 eV) and, thus, lower visible light absorption [4]. Therefore, despite its limitations, Nb_2O_5 can be efficiently applied for promoting light induced reactions, such as hydrogen evolution.

In this work, a series of photocatalysts were obtained through the hydrothermal treatment of Nb_2O_5 at different pHs, aiming at investigating the influence of the hydrothermal pH media in the performance of the materials against photocatalytic hydrogen evolution.

MATERIALS AND METHODS

The studied photocatalysts were obtained through hydrothermal treatment, in which 0.500 g of pristine Nb2O5 were suspended in 80 ml of deionized water under constant magnetic stirring. Subsequently, the suspension's pH was adjusted to 2, 4, 6, 8 and 10 with 0.1 M solutions of NH_4OH or HNO_3 . Afterwards, the resulting suspension underwent 24 hours of hydrothermal treatment at 200 °C. Lastly, all samples were centrifuged, washed and dried at 80 °C.

The photocatalytic H₂ evolution assays were carried out in septum-sealed 80 or 18 mL borosilicate jacketed reactors. Both were connected to a thermostatic bath set at 20 °C. In all assays, 1 mg mL⁻¹ of photocatalyst were suspended in 10% v/v of MeOH aqueous solution and kept under constant magnetic stirring. A 300 W xenon was used as an irradiation source. The irradiance was set at 100 mW cm⁻². To improve the photocatalytic H₂ evolution, 1% Pt⁰ content was deposited onto the photocatalysts surface through the *in situ* Photodeposition method, as described elsewhere [5].

November 21st - 22nd, Goiânia - GO, 2024

RESULTS AND DISCUSSION

The XRD patterns of Nb_2O_5 prior and after the hydrothermal treatment are shown in Fig 1a. The pristine Nb_2O_5 and those treated at pH 2, 4 and 6 presented a mixture of orthorhombic (T- Nb_2O_5) and monoclinic (H- Nb_2O_5) phases, according to powder diffraction files ICDD 30-0873 and 37-1468, respectively. For the sample treated at pH 8 only the pseudo-hexagonal (TT- Nb_2O_5) structure was observed (ICDD 28-0317), indicating a phase transition. The long-range structural organization of the samples prepared at alkaline medium was severely reduced, especially at pH = 10, in which only two broad features can be seen in its diffractogram.

It is known that $TT-Nb_2O_5$ phase may be stabilized by defects in the structure, for example the replacement of oxygen atoms by vacancies or by monovalent species, such as OH^- and Cl^- impurities [6]. Therefore, the hydrothermal treatment promotes the formation of $TT-Nb_2O_5$ phase in alkaline medium, where the hydroxyls guarantee its stability. Furthermore, according to XRD, as the concentration of OH^- ions increase, the number of defects in the material's structure and, consequently, its crystallinity decreases until reaching a point where the structural defects are so many that the material becomes amorphous, as observed in the pH 10 sample.

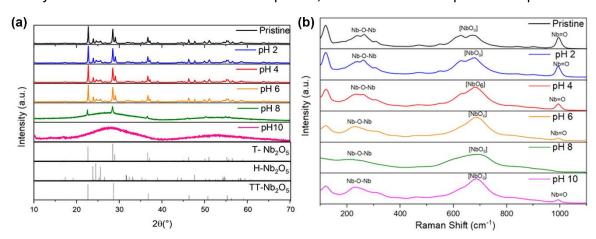


Figure 1. (a) XRD patterns and (b) Raman spectra of the Nb₂O₅ samples.

Raman spectroscopy analyses, Fig 1b, agrees well with the XRD data, confirming the presence of $H-Nb_2O_5$, $T-Nb_2O_5$ and $TT-Nb_2O_5$ phases. Vibrational modes below 200 cm-1 refer to Lattice vibrations, and these bands are present in the H-Nb2O5 and T-Nb2O5 phases. The bands observed near 200-300 cm⁻¹ can be attributed to the bending modes of the Nb-O-Nb linkages, while the prominent band

November 21st - 22nd, Goiânia - GO, 2024

in the region of 550-800 cm⁻¹ corresponds to the symmetric stretching modes of the $[NbO_6]$ polyhedral [7]. Although the amorphous sample treated at pH 10 does not present long range order, it does have short range order, as its Raman spectrum also shows a variety of bands, resulting from a non-stoichiometric mixture of slightly distorted polyhedra of NbO_6 , NbO_7 and NbO_8 [7].

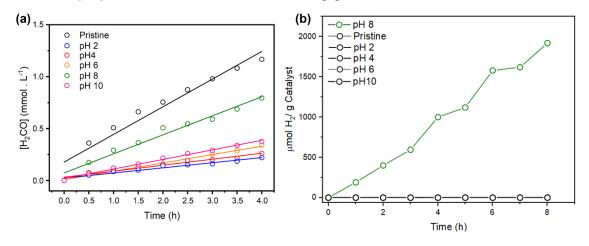


Figure 2. (a) Methanal production and (b) hydrogen evolution during the photocatalytic experiments using Pt loaded Nb₂O₅ samples.

Different photocatalytic activities for each of the phases found in this work are reported in literature, whereas the H phase is reported as the most photoactive, mainly due to the oxygen vacancies present in this structure [6, 8]. This would explain the fact that pristine Nb_2O_5 presents the best photocatalytic activity during methanol photodegradation tests, Fig 3a, achieving much higher methanal production.

The sample Nb_2O_5 pH 8 loaded with Pt^0 (1% wt.) was the only one able to produce H_2 , Fig 3b. The electronic transition between the d orbitals of Nb^{5+} and Pt^+ is forbidden for the H- Nb_2O_5 phase contained in pristine Nb_2O_5 and the samples treated at acid pH, while in the $T-Nb_2O_5$ phase this transition is partially allowed [8]. This can be explained through Laporte's Rule, where electronic transitions that conserve parity are prohibited. Due to the symmetrical octahedron of NbO_6 present in these two phases, the electronic transition is hampered, preventing the evolution of H_2 . Similarly, the $TT-Nb_2O_5$ phase presents significant structural distortions due

International Symposium on Energy

November 21st - 22nd, Goiânia - GO, 2024

to the insertion of OH^- ions, which makes the transition allowed, making the photocatalytic evolution of H_2 possible.

CONCLUSION

A series of photocatalysts were obtained by controlling the pH of the hydrothermal treatment media. The samples obtained in acid media retained the structural properties of pristine Nb_2O_5 while the samples synthetized in alkaline media showed a lower degree of crystallinity with significant presence of structural defects. Although the pristine Nb_2O_5 achieved higher methanol photodegradation yields, the material obtained at pH 8 was the only sample capable of producing H_2 using methanol as sacrifice agent. The improved H_2 production was attributed to the presence of structural defects induced by hydroxyl ions, which allowed improved charged transfer between the photocatalyst and the Pt co-catalyst.

Therefore, the present work brings a cost-effective approach for tuning materials for photo-induced green H₂ production

ACKNOWLEDGMENT

The authors are thankful to Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, APQ-01044-21), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, 406392/2018-8, 310303/2018-4).

REFERENCES

- [1] J.H. Kim, D. Hansora, P. Sharma, J.-W. Jang, J.S. Lee, Chem. Soc. Rev. 48(7) (2019) 1908-1971. https://doi.org/10.1039/C8CS00699G.
- [2] J.Z. Marinho, L.L. Nascimento, A.L.R. Santos, A.M. Faria, A.E.H. Machado, A.O.T. Patrocinio, Photochem. Photobiol. Sci. 21 (2022) 1659–1675.https://doi.org/10.1007/s43630-022-00249-5.
- [3] L.L. Nascimento, R.A. Carvalho Souza, J. Zacour Marinho, C. Wang, A.O.T. Patrocinio, J. Cleaner Prod. 449 (2024) 141709. https://doi.org/https://doi.org/10.1016/j.jclepro.2024.141709.
- [4] C. Avcıoğlu, S. Avcıoğlu, M.F. Bekheet, A. Gurlo, Materials Today Energy 24 (2022) 100936. https://doi.org/https://doi.org/10.1016/j.mtener.2021.100936.
- [5] J.Z. Marinho, L.L. Nascimento, A.L.R. Santos, A.M. Faria, A.E.H. Machado, A.O.T. Patrocinio, Photochem. Photobiol. Sci. 21(9) (2022) 1659-1675. https://doi.org/10.1007/s43630-022-00249-5.
- [6] Y. Jia, M. Zhong, F. Yang, C. Liang, H. Ren, B. Hu, Q. Liu, H. Zhao, Y. Zhang, Y. Zhao, J. Phys. Chem. C 124(28) (2020) 15066-15075. https://doi.org/10.1021/acs.jpcc.0c04202.
- [7] L. Wang, H. Lin, W. Kong, Y. Hu, R. Chen, P. Zhao, M. Shokouhimehr, X.L. Zhang, Z. Tie, Z. Jin, Nanoscale 12(23) (2020) 12531-12540. https://doi.org/10.1039/D0NR01981J.
- [8] S. Kamimura, S. Abe, T. Tsubota, T. Ohno, J. Photochem. Photobiol., A 356 (2018) 263-271. https://doi.org/https://doi.org/10.1016/j.jphotochem.2017.12.039.