

Energy Efficiency and Sustainability: Technological Advances in Key Sectors of Goiás

Gino Bertolucci Colherinhas^{1*}, Felipe Pamplona Mariano¹, Paulo Henrique Neves Pimenta², Getúlio Santiago dos Santos Junior³, Gabriela Miguel Fraga³

¹*Department of Electrical Mechanical and Computation Engineering, Federal University of Goiás, Goiânia-GO, Brazil,*

²*Department of Academic Areas IV, Federal Institute of Goiás, Goiânia-GO, Brazil*

³*General Secretariat of the Government of the State of Goiás, Goiânia-GO, Brazil*

*Corresponding author. E-mail: gino@ufg.br

ABSTRACT

This paper explores the impact of energy efficiency measures across key sectors in Goiás, Brazil, including agriculture, transportation, and industry. Through a review of current literature and case studies, the study highlights the adoption of advanced technologies such as precision irrigation, bagasse cogeneration, lightweight materials in vehicles, and energy-efficient logistics platforms. The findings reveal significant reductions in energy consumption and greenhouse gas emissions, contributing to regional economic growth and sustainability. Furthermore, the analysis emphasizes the role of policy initiatives and technological innovation in promoting energy optimization, particularly in agribusiness, transportation, and mining industries. This research provides a comprehensive understanding of how energy efficiency strategies can foster sustainable development and enhance competitiveness in Goiás.

Keywords: Energy efficiency, Goiás, industrial sector, sustainability.

INTRODUCTION

Energy efficiency is critical for sustainable development, especially in energy-intensive sectors such as agriculture, transportation, pharmaceuticals, mining, and automotive industries. The state of Goiás, with its economic diversity and strategic regional roles, presents a favorable environment for implementing strategies aimed at optimizing energy use and reducing environmental impacts. This study seeks to develop energy efficiency strategies tailored to these sectors and assess the technical and economic viability of implementing them across different regions of Goiás.

The Atlas of Energy Efficiency in Brazil, developed by the Energy Research Company (EPE) [1], provides a comprehensive analysis of energy efficiency progress in the country, monitoring key indicators that reveal the evolution of energy policies and practices. This document serves as a crucial resource for understanding energy efficiency dynamics across sectors, offering valuable insights for the implementation of strategies in Goiás. It highlights areas in need of

improvement and those that have achieved significant advancements, laying a solid foundation for the formulation of public policies and private initiatives aimed at optimizing energy use in the state.

Energy efficiency is a widely discussed topic due to its direct impact on sustainability and economic competitiveness. Studies which analyze the distribution of BNDES resources across sectors in Goiás [2], highlight the importance of directing investments towards technologies that promote energy efficiency, particularly in the agro-industrial sector. Among these technologies, investments in the modernization of industrial and automotive equipment stand out, aiming to reduce energy consumption and improve productivity. Additionally, the study mentions the implementation of more efficient transportation systems, including the expansion of railway networks and the adoption of biofuel-powered vehicles, which not only reduce greenhouse gas emissions but also optimize energy use in the transportation and logistics sectors. These technologies clearly demonstrate how targeted financing can be utilized to foster energy efficiency, contributing to more sustainable and balanced economic development in Goiás.

The historical context of Brazil's energy efficiency policies, dating back to the 1980s, demonstrates the country's commitment to energy conservation across various sectors, including initiatives such as the National Electric Energy Conservation Program (PROCEL) and the National Program for the Rational Use of Petroleum and Natural Gas Derivatives (CONPET). Despite these efforts, the National Energy Efficiency Plan (PNEf) identifies persistent challenges, including a lack of integration between initiatives, outdated infrastructure, and insufficient legal and financial incentives [3]. These barriers highlight the need for a coordinated approach and greater investment in energy-efficient technologies, particularly in high-consumption sectors like those prevalent in Goiás. By addressing these challenges, the state of Goiás has the potential to become a model for energy efficiency, combining modern technology with innovative strategies to achieve greater sustainability in its key economic sectors.

MATERIALS AND METHODS

This study conducted a comprehensive search of research articles and documents through the Scopus and Science Direct databases, focusing on sectors that have significant industrial activity in Brazil. Keywords related to the agro-industrial, transport, pharmaceutical, mining, and automotive sectors were used, with a special focus on studies applicable to the mesoregions of Goiás. A total of 15 documents (articles, doctoral thesis and master's dissertation) were selected for analysis, all of which met the criteria of addressing energy efficiency and industrial sustainability. However, due to the limited availability of studies on the pharmaceutical and mining sectors specifically within Goiás, strategies applied in countries other than Brazil were included.

The search parameters were filtered to include studies that focus on energy efficiency and its impact on key sectors of Goiás' economy. Keywords such as "energy efficiency in agroindustry," "transport energy sustainability," and "energy efficiency in automotive manufacturing" were applied, along with regional filters targeting Brazilian studies.

RESULTS AND DISCUSSION

The research findings show significant advancements in energy efficiency across various sectors, including agriculture, transport, and industrial activities, particularly in Goiás. These sectors have experienced notable improvements due to technological innovations, changes in infrastructure, and policy implementations aimed at optimizing energy use.

In the agricultural sector, Ferreira (2016)^[4] emphasizes the modernization of the sugarcane agribusiness in Ceres, Goiás, which involved the adoption of advanced technologies like high-yield sugarcane varieties and precision irrigation systems. These initiatives have significantly reduced energy consumption during production and improved logistics efficiency by enhancing transportation infrastructure and adopting energy-efficient vehicles. Similarly, Borges (2015)^[5] explores the socio-economic impacts of sugarcane expansion in Goianésia, Goiás, highlighting the increased demand for energy due to the intensification of production and transportation activities. The study underscores the need for energy efficiency strategies to mitigate the rising energy consumption in the region. Sobrinho (2023)^[6] further investigates the contribution of the agribusiness sector to economic growth and technological development in Tocantins, suggesting the use of precision agricultural techniques and biofuel alternatives to reduce fossil fuel consumption and improve sustainability, offering insights applicable to Goiás. In the sugarcane ethanol production sector, Pinto (2018)^[7] highlights the role of energy optimization technologies such as bagasse cogeneration, which allows sugar mills to produce part or all of the energy required for their operations, significantly reducing dependence on external energy sources. This aligns with broader goals of achieving energy efficiency and sustainability in the agro-industrial sector in Goiás.

Transport also plays a crucial role in energy consumption, representing approximately 30% of final energy use in Brazil, particularly in road transport, which is highly inefficient. The PNEf suggests that transitioning to more efficient transport modes, such as railways and waterways, and modernizing the vehicle fleet are critical for reducing fuel consumption and emissions [3]. In Goiás, Martins (2017)^[8] discusses the implementation of multimodal logistics platforms designed to integrate road, rail, and air transport. This infrastructure, supported by advanced logistics management technologies, has enhanced operational efficiency and reduced fuel consumption, improving the region's competitiveness. Moreover, urban mobility improvements, as highlighted by Faico (2022)^[9], show that adopting

electric and hybrid vehicles in urban fleets, along with the expansion of public transport systems, can drastically reduce fossil fuel use and greenhouse gas emissions in Goiás.

In the automotive industry, the shift towards lightweight materials, as discussed by Kulkarni et al. (2018)^[10], presents a significant challenge. Vehicle weight reduction through the use of aluminum and other materials is crucial for lowering fuel consumption and CO₂ emissions. Badke (2021)^[11] analyzes the use of aluminum sheets in automotive components, which combine lightness and strength to achieve these energy efficiency targets. In industrial applications, as the transition from Liquefied Petroleum Gas (LPG) to Liquefied Natural Gas (LNG), Colherinhas and Araújo (2021)^[12] demonstrate a 10% reduction in current energy consumption and a 14% decrease in post-combustion CO₂ emissions, which aligns with the industry's goal to reduce operational costs and environmental impacts.

Finally, the mining sector in Goiás, a key part of the local economy, faces the challenge of balancing production with resource conservation. Fikru and Romani (2024)^[13] emphasize that implementing energy-efficient mining technologies such as cogeneration, low-energy equipment, and real-time monitoring systems is essential for achieving sustainable and competitive production. As in China, Ma et al. (2024)^[14] point out that energy-saving technologies and innovative practices are critical for advancing green mining in Goiás. Moreover, the use of hot-air sintering technology, as proposed by Li et al. (2024)^[15], could further reduce carbon emissions in the mining process.

CONCLUSION

The research highlights significant advancements in energy efficiency across various sectors in Goiás, including agriculture, transport, automotive, and mining. The adoption of innovative technologies, such as precision irrigation, cogeneration in ethanol production, and energy-efficient vehicles, has substantially reduced energy consumption and emissions. Additionally, improvements in logistics infrastructure and the shift from LPG to LNG in industrial applications have further optimized energy use. The mining sector has also benefited from the implementation of energy-saving technologies. These findings emphasize the critical role of energy efficiency strategies in fostering sustainable economic growth and enhancing competitiveness in Goiás. Continued efforts to modernize infrastructure and promote the use of clean technologies are essential to achieving long-term sustainability goals.

ACKNOWLEDGMENT

The authors would like to thank the financial support of Goiás State Research Support Foundation (FAPEG) and the General Secretariat of Government (SGG). We also thank FURNAS/Eletrobras/ANEEL for financing.

REFERENCES

- [1] EPE. Atlas de Eficiência Energética Brasil. Relatório de Indicadores, 2023.
- [2] Silva, RO.; MARQUES, MD. Distribuição Territorial dos Desembolsos do BNDES para a Indústria e a Infraestrutura entre 2000 e 2018. Instituto de Pesquisa Econômica Aplicada, 2021. <http://repositorio.ipea.gov.br/handle/11058/10683>
- [3] MME. Plano Nacional de Eficiência Energética - PNEf. Brasília: Ministério de Minas e Energia, 2020.
- [4] Ferreira, LCG. As Paisagens Regionais na Microrregião Ceres (GO): das Colônias Agrícolas Nacionais ao Agronegócio Sucroenergético. Tese (Doutorado em Geografia) - UnB, 2016, 296. <http://dx.doi.org/10.26512/2016.11.T.22952>
- [5] Borges, WV. Expansão canavieira e os reflexos socioeconômicos no município de Goianésia (GO), 1970-2010. Dissertação (Mestrado) - UEG, 2015. <http://www.btdt.ueg.br/handle/tede/987>
- [6] Sobrinho, FAOR. Contribuição do agronegócio para o crescimento econômico e desenvolvimento tecnológico em Tocantins. Tese (Doutorado em Desenvolvimento Regional) - UFG, 2023. <http://hdl.handle.net/11612/6607>
- [7] Pinto, LA. Ecoeficiência da produção sucroalcooleira no Piauí. Dissertação (Mestrado) - UEPI, 2018. <http://hdl.handle.net/123456789/996>
- [8] Martins, F. Desenvolvimento Regional e a Infraestrutura Logística: Projeto da Plataforma Logística Multimodal do Estado de Goiás. Dissertação (Mestrado) - PUC-GO, 2017. <http://tede2.pucgoias.edu.br:8080/handle/tede/3643>
- [9] Faico, G. Mobilidade Urbana Sustentável: Caminhos da Agenda 2030 na Década da Ação. In Cidades e Sustentabilidade, UERGS, 2022. Ed. 1, Ch. 13.
- [10] Kulkarni, S., Edwards, D.J., Parn, E.A., Chapman, C., Aigbavboa, C.O. and Cornish, R. Evaluation of vehicle lightweighting to reduce greenhouse gas emissions with focus on magnesium substitution. J Eng Des Tech, 2018. 16, 869-888. <https://doi.org/10.1108/JEDT-03-2018-0042>
- [11] BADKE, J. B. Caracterização Experimental da Anisotropia em Chapas de Alumínio da Série 5XXX Classe 5052-H32. Trabalho (Conclusão de Curso de Graduação) - UFSM, 2021. <http://repositorio.ufsm.br/handle/1/22658>
- [12] COLHERINHAS, G.B; ARAÚJO, T. F. R. Avaliação do Projeto de Substituição de Gás Liquefeito de Petróleo para Gás Natural Liquefeito em uma Empresa Automobilística. Revista Processos Químicos, 2021, 14(28), 210-2020. <https://doi.org/10.19142/rpq.v14i28.617>
- [13] FIKRU, M. G.; ROMANI, I. G. Optimizing Mineral Extraction and Processing for the Energy Transition: Evaluating Efficiency in Single versus Joint Production. MIT CEEPR Working Paper, 2024.
- [14] MA, Y. et al. Green mining in China: Achievements and challenges. J Clean Prod, 2024, 96, 105233. <https://doi.org/10.1016/j.resourpol.2024.105233>
- [15] LI, J. et al. Hot-air sintering technology for carbon reduction in iron processing. J Sustain Min, 2024. 471, 143403. <https://doi.org/10.1016/j.jclepro.2024.143403>