
   

 

CILAMCE-2024 

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Maceió, Brazil, November 11-14, 2024 

A deep learning approach for detection small portions of water in 

images acquired by drones 

Gustavo A. Lima, Rafael O. Cotrin, Gabriel R. Paz, Marcos Alexandruk, Sidnei A. de Araujo 

Informatics and Knowledge Management Post-Graduation Program, Universidade Nove de Julho – UNINOVE, 

Vergueiro street 235/249, São Paulo, Brazil 

gustavo.araujo.lima94@gmail.com, rafa25.cotrin@gmail.com, gabrielrpaz11@gmail.com, 

m.alexandruk@gmail.com, saraujo@uni9.pro.br 

Abstract. Drones have been used to automatically identify objects and scenarios (normally water tanks, buckets, 

plant pots, and other containers contained in open-air trash) that characterize potential breeding sites of mosquito, 

such as the Aedes aegypt, from the acquired images. However, despite knowing that water stagnation is an essential 

condition for breeding mosquitoes, computer vision systems proposed in the literature for automatic image analysis 

do not include the detection of water in suspicious objects and scenarios, which constitutes a technical limitation 

for the effective use of drones in vector monitoring and control actions. In this work, an approach combining K-

means with a convolutional neural network YOLOv8 is proposed to detect and locate small portions of water in 

images acquired by drones. To carry out the experiments, we composed two datasets of images acquired from 

simulated scenarios contemplating small containers with and without water in controlled environments. The 

overall results obtained in computational experiments (accuracy = 0.962; precision = 0.960; sensibility = 0.977) 

indicates the viability of adopting the proposed approach in existing computer vision systems for automatic 

identification of mosquito breeding sites, making them more effective for health surveillance actions. 
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1  Introduction 

The epidemics of dengue, Zika, chikungunya, and urban yellow fever, transmitted by mosquitoes, have 

caused significant concern among health authorities in Brazil and worldwide [1]. In 2024, dengue remains a serious 

public health issue in Brazil, with over 5 million cases reported and approximately 3,000 deaths recorded by May 

[2]. This significant increase in cases has overwhelmed the healthcare system, leading to high economic and social 

costs, including hospitalizations and loss of productivity due to absenteeism. Severe complications of dengue, 

transmitted by Aedes aegypt, such as shock and hemorrhages, increase mortality rates, particularly among the most 

vulnerable populations. In this context, ongoing efforts in prevention, control, and treatment are essential to 

mitigate the impacts of this disease in the country [3]. 

The Brazilian Ministry of Health conducts annual advertising campaigns to combat the Aedes aegypti 

mosquito, involving state and municipal managers as well as the public. In 2023, the federal government allocated 

approximately R$13 million for these campaigns [4]. Combating the Aedes aegypti mosquito also requires 

additional efforts, as informational campaigns and public mobilization do not always achieve the desired results. 

According to the Brazilian Ministry of Health, in addition to the dengue vaccine and the development of vaccines 

for other arboviruses, it is important to incorporate new technologies [2]. 

An alternative has been the use of drones to capture aerial images in regions more vulnerable to mosquito 

proliferation [5]. However, it is still common for the images captured by drones to be analyzed manually (visually), 

which is time-consuming for inspections. 
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On a global scale, there has been a growing number of scientific studies over the last decade proposing 

computer vision systems (CVS) for the automatic identification of objects and scenarios that characterize potential 

mosquito breeding sites in aerial images acquired by drones. Notable works in this area include [6-13]. These 

studies typically employ computer vision (CV) and artificial intelligence (AI) techniques to automatically identify 

key suspicious objects in the images, such as water tanks, tires, swimming pools, plant pots, gutters, and open 

inorganic waste. However, despite the understanding that stagnant water is a critical condition for mosquito 

breeding, the CVS proposed in the literature for automatic image analysis do not include water detection in the 

suspected objects and scenarios, which constitutes a technical limitation for the effective use of drones in 

monitoring and combating mosquitoes breeding sites. 

2  Theoretical Background 

2.1 Aedes aegypti 

The Aedes aegypti mosquito is known for its diurnal habits. Inside residences, it tends to shelter in shaded 

and dark areas. While the male mosquito feeds on plant nectar, the female requires human blood for egg 

maturation. These eggs are laid separately on the internal walls of objects, usually near the water surface, providing 

ideal conditions for their survival [14]. 

According to information from the Ministry of Health, various containers can accumulate water and serve as 

breeding sites for mosquitoes, such as water tanks, stagnant water in plant pots, tires, and empty bottles. Therefore, 

it is important to be cautious with all locations that may collect water, as mosquito eggs are resistant to desiccation 

and can survive in the environment for up to 450 days. Even a small amount of water, such as a small puddle, is 

sufficient for the larvae to hatch [14]. In this study, the identification of stagnant water considers objects that may 

accumulate it, such as basins and other containers typically found in inorganic waste left exposed to the elements. 

2.2 Water identification in aerial images 

In the remote sensing (RS) literature, there are many studies addressing the detection of water bodies (any 

significant accumulation of water on the earth's surface, such as seas, rivers, and lakes) and other features like soil 

and vegetation, from aerial images acquired by satellites. There are indices calculated based on the spectral bands 

available on satellite imaging sensors to identify water, such as the NDWI – Normalized Difference Water Index 

[15] and IIA – Water Indicator Index [16], which are based on the combination of the visible and near-infrared 

(NIR) bands. 

Although signatures (or indices) that characterize patterns associated with water bodies are a common task 

in remote sensing RS, detecting water contained in small objects from satellite images is challenging due to the 

low spatial resolution of these images. However, while drones provide high spatial and temporal resolution images, 

the sensors coupled on them are typically of low spectral resolution, making it difficult to utilize the spectral 

signatures proposed in the literature. This highlights a research gap that has motivated some recent studies. 

Prasad [17] and Bravo et al. [10], for example, proposed approaches for identifying small lakes, swimming 

pools, fountains, and puddles. De Mesquita et al. [18] developed a drone with an embedded software capable of 

detecting both stagnant and moving water, whether clean or dirty, which sends notifications to the drone operator 

when water is detected, allowing for manual pesticide application. The study by Truong et al. [19] aimed to explore 

the feasibility of identifying temporary water bodies using real-time surveillance images obtained by drones, 

employing convolutional neural networks based on the YOLOv4 model. However, such approaches are not 

applicable for detecting water contained in tires, plant pots, gutters, and small containers typically found in open 

inorganic waste, as they are unable to identify such small volumes of water. 
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3  Material and methods 

3.1 Image acquisition 

Two image datasets were created for the experiments. The first dataset contains 108 images captured by a 

DJI Matrice 200 drone, equipped with a Micasense RedEdge-MX multispectral camera, positioned approximately 

2 meters above the targets. Each capture provided an image with the spectral bands Blue (B), Green (G), Red (R), 

Infrared (NIR), and RedEdge (EDG), as illustrated in Figure 1. The second dataset consists of 51 RGB images 

captured by various smartphones, at a height of about 1 meter from the targets, as illustrated in Figure 2. Each 

image represents a scenario contemplating objects with different storage capacities (ranging from 0.1 to 12 liters), 

which may or may not contain water, and the water could be either clean or dirty. 

 

(a) B (b) G (c) R (d) NIR (e) EDG 

Figure 1. Spectral bands of an image of the dataset 1 

   

Figure 2. Images from the dataset 2 

3.2 Identification of the most important spectral bands for water detection 

To identify the most suitable bands for the purpose investigated in this study, a clustering analysis of pixel 

intensities for each band was performed, with respect to the classes (Water − W / Non_Water − NW). For example, 

if the clusters for classes W and NW are very close for a particular band, then that band is not ideal as it will not 

provide good segmentation in the images. In other words, the greater the separation between clusters, the better 

the band's suitability for water detection. To achieve this, K-means algorithm [20] was configured with 2 clusters. 

The results of the K-means clustering of the data are presented in figures 3 and 4. Figure 3 shows the centroids 

representing the average gray intensities of the spectral bands for each class. Figure 4 presents graphs illustrating 

the separation of the classes for each band. As observed in figures 3 and 4, the G, B, and EDG bands are more 

suitable for segmentation, followed by the R and NIR bands. 

  

Figure 3. Centroids calculated by K-means for each class 

 

It is observed that for the NIR band, the centroids for classes W and NW are very close, making it difficult 

the segmentation (or classification) of the pixels. Based on this analysis, and considering the small difference 

between the EDG and Red bands, we decided to use all three bands of the visible spectrum (R, G and B) to train a 

convolutional neural network (CNN) [21] with the YOLOv8 [22] architecture for water identification in the images 

acquired by the drone. This allowed the combination of images from both datasets for CNN training. It is worth 

noting that if any of the non-visible spectrum bands (NIR and EDG) had been included among the selected bands, 

we would have had to train two separate CNNs, as dataset 2 contains only RGB images. 
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Figure 4. Graphical result of data clustering by K-means 

3.3 Training and Predictions with the YOLOv8 CNN 

Two experiments were conducted for water detection. In the first experiment, 76 images from dataset 1 were 

used for CNN training, while in the second experiment, images from both datasets were combined (76 images 

from dataset 1 and 36 images from dataset 2) for CNN training. The objective of these experiments was to analyze 

the CNN's predictions for images that were significantly different from those used in training. In both experiments, 

CNN was configured with the same parameters: a batch size of 16, an initial learning rate of 0.001, and three color 

channels (B, G, and R). Data augmentation was performed using a method integrated into the YOLO framework 

[22]. The online platform Roboflow [23] was used for annotating the training images (indicating regions of interest 

with bounding boxes – ground truth). Figure 5 illustrates the operational diagrams of the proposed approach for 

water detection in the images. 

 

    

(a) 

  

(b) 

Figure 5. Operational diagrams of the proposed approach. (a) Training of the CNN and (b) Predictions with the 

images separated for testing 

In the diagram of Figure 5a, representing the training of the CNN, only the first two blocks are configured 

manually. After that, the CNN manages the entire process, with the final step being to save the file containing the 

adjusted weights and other parameters, which represent the network's learning. The performance metric for the 

CNN during training was mAP50, the default in the YOLOv8 architecture, which evaluates how well the bounding 

boxes predicted by the CNN overlap with the ground truth boxes in the annotated images. Maximizing mAP50 

indicates that the learning model is not only detecting objects but also accurately identifying their locations. Figure 

5b refers to testing with the trained CNN. For this, the file containing the weights and other parameters is loaded, 

and then the images reserved for testing are processed by the CNN. At the end of this process, metrics are obtained 

that indicate the quality of water detection in the test images. In our experiments, we used accuracy, precision, and 

sensitivity metrics to evaluate the CNN's ability to successfully detect containers with water. 
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4  Results  

During training, the following mAP-50 rates were achieved, respectively, in experiments 1 and 2: 0.980 and 

0.950. The results obtained for the test images in both experiments are summarized in the confusion matrices 

presented in Figure 6. For the first experiment, 146 containers were detected by the trained CNN in the 32 images 

from dataset 1 that were analyzed, with 96 predicted as Water (W) and 50 predicted as Non_Water (NW). In the 

second experiment (Figure 6b), 47 images (32 from dataset 1 and 15 from dataset 2) were analyzed, and 215 

containers were detected, with 131 predicted as W and 84 as NW. In terms of accuracy, precision, and sensitivity, 

the following results were obtained: Experiment 1 (accuracy = 0.993; precision = 0.989; sensitivity = 1.000) and 

Experiment 2 (accuracy = 0.930; precision = 0.931; sensitivity = 0.953). 

 

Figure 7 presents cases of water detection in containers from the test images. All containers with and without 

water shown in Figures 7a and 7c were correctly identified. In Figure 7b, out of the five containers containing 

water, four were correctly identified. One of them, highlighted with a yellow circle, was labeled as Non_Water, 

representing a false negative (FN). Finally, Figure 7d illustrates a false positive (FP), marked by a red circle, where 

a container that does not contain water was labeled as "Water". 

 

  
(a) (b) 

  
(c) (d) 

Figure 7. Results obtained for four test images. (a) and (b) – images from dataset 1. (c) and (d) – images from 

dataset 2 

 

 

(a) 

 

(b) 

Figure 6.  Confusion matrices obtained in the two experiments. (a) Experiment considering only images from 

dataset 1. (b) Experiment considering images from datasets 1 and 2 
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In the conducted experiments, it was observed that the learning model encountered greater difficulty in 

detecting containers with water when they had lighter colors. Additionally, these errors occurred more frequently 

in areas with intense lighting, which made some regions of the images much brighter than others, hindering the 

learning process of the CNN. Another issue observed was the CNN's performance in detecting empty containers 

in the first experiment compared to its performance in the same task in the second experiment. This can be 

explained by the fact that there were more examples of containers without water in the second experiment, which 

contributed to a better interpretation of the pattern. Increasing the number of training images could likely help 

resolve these issues. Moreover, balancing the number of targets during training could improve the CNN's 

performance for both classes (W, NW). Although data augmentation was employed, brightness and contrast 

adjustments were not considered among the commonly used operations for this purpose, and no preprocessing 

operations were applied to the images. 

 

Another problem observed was that when testing the model on images very different from those used in 

training, the CNN failed to detect water in a significant number of cases. This is probably due to the lack of similar 

examples in the training set. Therefore, it is suggested to include a variety of images for training, reflecting 

scenarios with different types of containers with and without water, taking into account the diversity of 

environments conducive to mosquito breeding. This can be seen as a limitation of the proposed approach, as no 

matter how comprehensive the training set is, there will always be distinct scenarios when the learning model is 

applied in practice. Thus, further studies are recommended to evaluate alternative solutions, one of which is the 

creation of indicators similar to those proposed in the works [15, 16]. 

 

Finally, it is important to note that although drone-acquired images offer significant advantages, such as high 

spatial and temporal resolutions, high-resolution images acquired by some satellite-borne sensors, such as 

WorldView-3, may also represent an important alternative for addressing the problem discussed in this work. 

5  Conclusion 

This study presented an approach for detecting small amounts of water in objects considered potential 

mosquito breeding sites. To achieve this, a CNN YOLOv8 was trained to segment the pixels of an image 

considering spectral bands chosen with the aid of the K-means algorithm. The conducted experiments 

demonstrated high sensitivity rates (1.000 and 0.953 −  average of 0.977), indicating the feasibility of the proposed 

approach to identify containers with water. Nevertheless, some limitations were noted regarding the need for a 

large training dataset, which was expected since deep learning is being used. Finally, it is highlighted that the 

proposed approach, if properly parameterized and trained, can enhance the effectiveness of using drones in 

combating mosquito breeding sites. For future work, it is suggested to investigate more deeply the behavior of 

spectral bands in the identification of water, as the results were better when excluding the NIR band, which is not 

fully consistent with most literature involving water body identification. Additionally, it is recommended to 

explore the possibility of creating a water indicator, considering the specificities of the spectral bands available in 

cameras commonly used on drones. 
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