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Abstract. Efforts to reduce drilling costs and duration have made accurate predictive models for rate of penetration 

(ROP) essential in the drilling industry. These models assist decision-making concerning parameters that affect 

drill efficiency. Utilizing advanced machine learning algorithms, such as ensemble methods and artificial neural 

networks, has become a clear trend aimed at enhancing predictive precision. In this study, a staked generalized 

ensemble model is introduced with the objective of improve the performance of ROP prediction. This approach 

combines four base learners, namely Random Forest (RF), Gradient Boosting (GB), Multiple Linear Regression 

(LR), and Artificial Neural Networks (ANN). The resulting meta-data from these models are used to make final 

ROP prediction using Ridge Regression algorithm. Drilling data from two wells in the Volve Field are used for 

training, including various operational and formation related parameters, such as Weight on Bit (WOB), Average 

Rotary Speed (RPM), Mud Flow Rate (FR), and Delta-T Compressional (DTC). The performance of the model is 

evaluated on an unseen well using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The 

proposed approach has demonstrated superior performance compared to the base learners, as indicated by the 

comparative analysis. This suggests its potential to enable more accurate predictions, consequently improving the 

efficiency of the drilling process. 
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1  Introduction 

In the oil and gas industry, the Rate of Penetration (ROP) is a key measure of drilling efficiency. A higher 

ROP reduces operational time and associated costs. Improving drilling efficiency solving an optimization problem 

that aims to maximize ROP as a function of operational parameters and geological data. An accurate ROP model 

is essential to achieve this goal. 

Various empirical models for ROP prediction have been proposed, including those by Bingham [1], 

Bourgoyne Jr. and Young Jr. [2], Warren [3, 4], Hareland and Rampersad [5], Hareland [6], and Motahhari [7]. 

More recent research has applied machine learning regression to predict ROP. This approach involves identifying 

complex patterns in training data to make predictions in new datasets. Machine learning models have been 

demonstrated higher accuracy on real-world field data compared to traditional models, as shown by Soares and 

Gray [8] and Ferro [9]. This superior performance is attributed to the ability to capture the complex, and nonlinear 

relationships among the various variables influencing the drilling rate. 

Multiple architectures have been used in ROP prediction. Artificial Neural Networks (ANN) are the most 

used algorithms, according to Barbosa [10] and Li [11]. This category includes Multi-Layer Perceptron (MLP), 

Radial Basis Function Neural Networks (RBFNN), Extreme Learning Machines (ELM), Adaptive Neuro-Fuzzy 

Inference System (ANFIS), and other algorithms. Recent studies have achieved accurate results in ROP prediction, 
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such as those by Ashrafi [12], Abbas [13], Brenjkar [14], and Shi [15]. 

Ensemble methods represent another popular group of techniques used in ROP prediction. Li [11] notes that 

most applications in this category rely on Random Forest (RF), an ensemble based on decision trees. The 

interpretability of RF is a notable feature frequently used for feature selection. Research by Soares and Gray [8], 

Ferro [9] and Shaygan and Jamshidi [16] demonstrates that RF models can outperform ANN in terms of accuracy 

when predicting ROP.  

Stacked generalization is an ensemble learning technique that combines predictions from multiple individual 

algorithms using a meta-model to achieve higher prediction accuracy. Although less popular than other methods, 

this approach has the potential to improve ROP predictions by leveraging the strengths of the base learners. 

Promising results were achieved by Liu [17], who proposed a stacking model for ROP prediction using Extreme 

Gradient Boosting (XGB) as a meta-model and five base learners: Support Vector Regression (SVR), Extremely 

Randomized Trees (ET), Random Forest (RF), Gradient Boosting (GB), and Light Gradient Boosting (LGB). A 

similar approach was adopted by Alsaihati [18], using RF as a meta-model, and ANN and ANFIS as base learners. 

In both cases, the highest accuracy was achieved by the stacking model. 

This study proposes an ROP model based on stacked ensemble learning, using four base learners, namely 

RF, GB, Multiple Linear Regression (MLR), and ANN. The stacked model combines meta-data from these models 

to calculate ROP predictions using Ridge Regression. A case study is presented using data from the Volve oil field. 

Two wells provide data for training, and the performance of the model's generalization is assessed using data from 

an unseen well. The stacking ensemble model was seen to outperform the base learners in terms of prediction 

accuracy.  

2  Machine learning algorithms 

Machine learning algorithms play an essential role in improving the accuracy of ROP prediction. In this 

section, some of the most popular approaches will be explored. 

Random Forest (RF) is an ensemble machine learning algorithm that combines the predictions of multiple 

decision tree structures. A decision tree is built on a series of decisions, where each decision is based on variable 

values to choose one path or another [19]. In RF, each tree is created using the bagging method, which involves 

generating different random subsets of the original data by sampling with replacement. Moreover, during the 

construction of each tree, only a sample of features is randomly selected to consider for splitting at each decision 

node [20]. Each tree is trained on a different subset of training data. In regression problems, final predictions are 

obtained by averaging the predictions from all the trees. This process helps to reduce the variance and improve the 

overall model performance compared to a single decision tree. 

Similarly, Gradient Boosting (GB) is another ensemble learning algorithm based on multiple decision trees. 

However, GB constructs trees sequentially, using information from previously grown trees [20]. Starting with an 

initial solution, the error between the predicted and observed values is evaluated using a loss function, typically 

the Mean Squared Error (MSE) in regression. A new tree is built to minimize this residual. This involves finding 

the best combination of features and split points for the decision tree. The process is repeated iteratively, with each 

tree aiming to reduce the accumulated residuals from previous trees. Final predictions are obtained by summing 

the predictions from all the trees [21]. 

Moving on to a linear technique, Multiple Linear Regression (MLR) assumes that there is approximately a 

linear relationship between the set of features and the target variable. The MLR model takes the form 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 (1)  

where 𝑋𝑗 represents the 𝑗th predictor, 𝛽𝑗 is the coefficient that relate this feature and the response 𝑌, and 𝑝 is the 

number of predictors. The coefficients are obtained by minimizing the sum of squared residuals 

 

𝑅𝑆𝑆 = ∑(𝑦𝑖 − �̂�0 − �̂�1𝑥𝑖1 − �̂�2𝑥𝑖2 − ⋯ − �̂�𝑝𝑥𝑖𝑝)
2

𝑛

𝑖=1

(2) 

 

where 𝑦𝑖 is the 𝑖th target value observed, and �̂�0,  �̂�1, …, �̂�𝑝 are the values that minimize Eq. 1.  
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In problems with many predictors or when the predictors are highly correlated, there can be a lot of variability 

in the least squares fit, leading to overfitting and consequently poor predictions for new data. This can be handled 

by constraining the estimated coefficients, which can reduce variance with a small increase in bias [20]. One such 

approach is Ridge Regression, which imposes a penalty on the sum of squared, so that the function to be minimized 

becomes 

𝑅𝑆𝑆 + 𝜆 ∑ 𝛽𝑗
2

𝑝

𝑗=1

(3) 

where 𝜆 ≥ 0 is a tuning parameter that controls the amount of shrinkage applied to the coefficients.  

In contrast to linear models, Artificial Neural Networks (ANN) are nonlinear models composed of layers of 

artificial neurons, each connected to the next through adjustable weights. Each neuron in a layer receives inputs, 

performs a linear combination of these inputs (by multiplying them with weights and adding a bias), and applies 

an activation function to produce an output. These outputs are then passed to the next layer, and the process repeats 

until the output layer is reached. The output of the neural network has the form 

𝑓(𝑋) = 𝛽0 + ∑ 𝛽𝑘𝑔 (𝑤𝑘0 + ∑ 𝑤𝑘𝑗𝑋𝑗

𝑝

𝑗=1

)

𝐾

𝑘=1

(4) 

 

where 𝑋 is an input vector of 𝑝 variables, 𝐾 is the number of hidden units, 𝑔 is a nonlinear activation function, 

and the parameters 𝛽0, … , 𝛽𝑘 and 𝑤10, … , 𝑤𝐾𝑝 need to be estimated from data [20]. The activation function may 

be considered in many forms such as linear, sigmoidal and ReLU. Fitting ANN involves estimating the unknown 

parameters in Eq. 4. Popular strategies for training include gradient descent and regularization algorithms. 

Finally, Stacked Generalization, also known as Stacking, is an ensemble learning technique introduced by 

Wolpert [22] that combines the predictions of multiple models to achieve a more accurate final prediction. This 

approach can be seen as a more sophisticated version of cross-validation, as it combines the strengths of each 

model, instead of simply select the single best-performing model.  

The method consists of using predictions from base learners as inputs to train a meta-model, which is 

responsible for the final predictions. According to Breiman [23], Stacking is likely to be more beneficial when 

combining dissimilar models. Similar regressors tends to capture the same information from the data, leading to 

very similar predictions. 

3  Methodology 

Data from two wells in the North Sea Volve oil field are used to train the base learners and subsequently the 

meta-model. The stacking proposed structure is presented in Fig. 1. A total of 20038 data points are utilized to 

train, covering the lithologies of claystone, limestone, sandstone, siltstone, marl, and coal. The set of features 

includes mud logging and Logging While Drilling (LWD) information, such as Weight on Bit (WOB), Average 

Rotary Speed (RPM), Mud Flow Rate (FR), and Delta-T Compressional (DTC). The selected features include 

three operational parameters of interest for optimization, WOB, RPM and FR; and DTC, which provides 

geophysical information about the drilled formation. The model’s performance is evaluated using five-fold cross 

validation. Additionally, 5457 data points from an offset well not used during training is also assessed.  

The data were pre-processed with noise reduction using the Savitzky-Golay smoothing filter and data 

normalization [11]. Table 1 provides a data description of the data. Wells F15S and F10 were used for training and 

cross-validation, while F14 was used for testing. 
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Table 1. Data description per well. 

Well Number of 

points 

Stat. Measured  

depth [m] 

ROP 

[m/h] 

WOB 

[tf] 

RPM  

[rev/min] 

FR 

[L/min] 

DTC 

[µs/ft] 

F15S 15220 Min. 2554.83 0.666 0.000 0.00 791.376 52.922 

  Max. 4062.98 55.836 22.060 290.856 2382.388 116.549 

  Mean 3439.907 14.365 6.987 200.484 1825.933 73.215 

F10 4818 Min. 3800.128 2.585 7.851 119.538 1929.294 53.103 

  Max. 4299.725 34.649 17.569 204.885 2528.527 76.735 

  Mean 4038.582 21.253 9.653 179.618 2324.392 61.023 

F14 5457 Min. 2780.282 1.484 0.453 67.769 1650.853 58.825 

  Max. 3465.850 39.274 15.187 181.856 2081.097 106.672 

  Mean 3083.112 18.020 7.602 153.79 1973.95 80.262 

 

The performance of cross-validation is assessed using the Mean Squared Error (MSE), calculated as 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

(3) 

where 𝑛 is the number of points, 𝑦𝑖  is the 𝑖th observed target value, and �̂�𝑖 is the corresponding predicted value. 

In the test well, the performance is further evaluated using the Mean Absolute Error (MAE) and the Root Mean 

Squared Error (RMSE), calculated as 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

(4) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

 (5) 

4  Results and Discussion 

The base learners and meta-model were trained using five-fold cross validation. In this process, the training 

set is divided into five folds. In each iteration, one of the folds is used as the validation set, while the remaining 

four are used for training. The final validation metric was obtained by averaging the MSE from all five iterations, 

providing a more robust estimate of the model’s performance. Hyperparameter tuning was performed using grid 

search, with the search space and selected parameters presented in Tab. 2. 

Figure 1. Stacked model. 
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Table 2. Hyperparameter grid search. 

 Hyperparameters Search space Selected 

RF n_estimators 50, 100, 200 200 

 min_samples_leaf 8, 10, 12 8 

 max_features “sqrt” “sqrt” 

 max_depth 8 8 

GB n_estimators 50, 100, 200 200 

 min_samples_leaf 8, 10, 12 8 

 max_features “sqrt” “sqrt” 

 max_depth 8 8 

 learning_rate 0.001, 0.005, 0.01 0.001 

ANN hidden_layer_sizes 5, 10, 20, 30, 40, (5, 5), (10, 10), (15, 15), (20, 20)  (15, 15) 

 learning_rate 10-4, 10-3, 10-2, 10-1 10-3 

 activation ReLU ReLU 

 max_iter 200 200 

 early_stopping True True 

 n_iter_no_change 15 15 

 validated_fraction 15% 15% 

 solver SGD SGD 

Ridge alpha 0.05, 1.0, 5.0  1.0 

 

The validation metrics for each fold, as well as the mean and standard deviation, are presented in Tab. 3. The 

stacking model shows the lowest mean error, demonstrating an improved accuracy of 24.63% compared to the 

best performing base learner, GB. This suggests that the proposed model may be well-suited for the problem. In 

contrast, LR performs significantly worse, with high validation error, indicating it may not effectively capture the 

complexity of the data. RF, GB, and ANN models show intermediate performance, outperforming LR.   

Table 3. MSE five-fold cross-validation. 

 RF GB LR ANN Stacking 

Split 1 9.744 9.045 284.839 18.297 7.067 

Split 2 10.180 9.553 289.722 20.138 7.302 

Split 3 9.416 8.685 293.743 18.254 6.441 

Split 4 10.071 8.607 292.023 20.548 7.069 

Split 5 10.076 9.317 289.479 18.308 6.801 

Mean 9.897 9.207 289.961 19.109 6.936 

Std. 0.281 0.310 3.002 1.016 0.294 

 

Li [11] emphasizes the importance of testing and validating data-driven models under conditions that truly 

reflect the complexity and variability of the data they will encounter in practice. According to the same author, 

most of the ROP prediction studies use a random percentage of the original data for testing. Since this data is part 

of a continuous sequence, some of the testing data may have very little difference from those used for training, 

which limits the assessment of the model's generalization ability. True generalization capability is better evaluated 

by testing the model with data from a completely new well. 

To assess the generalization capability of the models, an adjacent well was selected for testing. Figure 2 

shows the observed and predicted ROP values for this well, along with the associated generalization errors. The 

proposed Stacking model achieved the lowest error compared to the base learners. With MAE values of 6.72 m/h 

and RMSE of 7.91 m/h; it demonstrated an improvement in accuracy ranging from 8.44% to 33.33% over the 

MAE, and from 6.05% to 33.27% over the RMSE.  
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Although cross-validation showed that LR had the worst performance, the ANN stood out negatively by 

having the poorest performance on unseen data. This may suggest that the ANN is overfitting, meaning it is too 

closely tuned to the training data and struggles to generalize to new data. In contrast, the Stacking model 

demonstrated robustness against base learners' errors. By combining predictions from multiple models, the 

proposed model smooths out errors and showed superior generalization both in cross-validation and with new data 

for the study case.  

5  Conclusions 

The proposed Stacked Generalization Ensemble method for ROP prediction combines four base learners: RF, 

GB, LR and ANN. A study case using wells from North Sea Volve oil field showed superior generalization 

performance of the proposed model, outperforming the base learners both cross-validation and with data from an 

offset well not used during training.  

For optimal results, it is important that the base learners are diverse, and that overfitting is properly managed.  

By integrating the strengths of different models and reducing their errors, stacking models has the potential 

to enable more accurate ROP prediction. This could be valuable for recommendation systems of operational limits 

for drilling oil and gas wells, where precise ROP predictions are essential.  
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Figure 2. ROP predictions. 
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