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Abstract. Predicting egg production in poultry farming is a complex task due to the multitude of influencing
factors such as temperature, nutrition, and environmental conditions. This study aims to evaluate the performance
of various machine learning models in forecasting egg production using multivariate time series data. The dataset
comprises records of the Hy-Line chicken breed, divided into four batches, with attributes including age, maximum
and minimum temperature, feed and water consumption, and daily production percentage. The study employs a
sliding window technique to capture temporal patterns and evaluates models including Ridge Regression, Random
Forest, XGBoost, and MLP (Multi-Layer Perceptron). The models were trained on three batches and tested on
the fourth, with performance measured using Mean Squared Error (MSE) and Mean Absolute Percentage Error
(MAPE). The results indicate that Ridge Regression, with a window size of 7 days, provided the most accurate
predictions, achieving an MSE of 19.74 and a MAPE of 3.81%. This study demonstrates the effectiveness of ma-
chine learning techniques and the sliding window approach in improving the accuracy of egg production forecasts,
offering valuable insights for poultry farm management and optimization.

Keywords: Sliding Window, Hy-Line breed, Poultry farming.

1 Introduction

Poultry farming has played a significant role in food production worldwide due to its ability to provide high-
quality protein. Poultry farming is crucial for food security, offering an essential protein source [[1]. In 2021, global
table egg production reached 87.60 million tonnes, marking a significant increase of 26.78% compared to 2010
[2]. Projections indicate that production will reach 95 million tonnes by 2030, with a predicted 9% increase in
global consumption compared to 2021. Brazil ranks as the seventh-largest egg producer in the world, accounting
for approximately 3.15% of global production.

Predicting egg production is a complex challenge due to the multiple variables involved, such as temperature,
nutrition, and environmental conditions. Machine learning models have proven effective in forecasting egg pro-
duction, enabling the analysis of large datasets and the identification of complex patterns influencing production
[3]. The use of multivariate time series, which consider the interdependence between multiple variables over time,
offers a more comprehensive approach to modeling and predicting dynamic phenomena such as egg production.
These series allow for the incorporation of factors like temperature, humidity, feed and water consumption, among
others, improving the accuracy of predictions.

The work of Bumanis et al. [4] uses a dataset with daily records containing egg production, temperature,
humidity, CO2, NH3, feed, and water consumption. Different window sizes (1, 2, 3, 5, 7, and 14 days) were tested
to determine the optimal window size for each model, including LSTM, CNN, Random Forest, and XGBoost. The
machine learning models are trained with 90% of the data from one batch, validated with 10% of the same batch,
and tested with another batch from the Lochman brown breed. The evaluation metrics are Mean Squared Error
(MSE), Mean Absolute Percentage Error (MAPE), and Root Mean Squared Percentage Error (RMSPE).

This work aims to continue the research of Bumanis et al. [4] by incorporating their methodology, previ-
ously used machine learning algorithms (Random Forest and XGBoost), and introducing additional ones (Ridge
Regression and Multi-Layer Perceptron — MLP). Some differences include using the Hy-Line breed for the dataset
in this work, training and validating the models with data from three batches, and testing with a fourth batch. The
evaluation metrics are MSE and MAPE. Also, our dataset did not include some attributes such as humidity, CO,
and NHs.
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The structure of the article is as follows: Section 2 explores related works. Section 3 describes the experimen-
tal methodology conducted. Section 4 details the results obtained and their analysis. Finally, Section 5 concludes
the article with final considerations and suggestions for future work.

2 Related Work

The work of Ahmad [5] evaluates various mathematical, statistical, and artificial intelligence models to fore-
cast egg production in commercial layers. The study uses data collected from a comparative layer trial on 22 com-
mercial strains at the Poultry Research Farms, Auburn University, and simulated data generated using mean and
standard deviation of egg production. The study compares three neural network architectures—back-propagation-
3, Ward-5, and the general regression neural network (GRNN)—against traditional models like linear regression
and the Gompertz nonlinear model. The GRNN model demonstrated superior performance, achieving an R? of
0.715, significantly higher than other models. The study highlights that brown-shelled strains consumed more
feed (114 g/bird/day) and produced more eggs (89.78% egg production) than white-shelled strains (105 g/bird/day
feed consumption and 86.89% egg production). Regression analysis indicated a positive correlation between feed
consumption and egg production, with a prediction equation of 4.0428 + 0.7663(feed consumption). Despite ini-
tial overprediction, the GRNN accurately predicted egg production phases, suggesting its practical application in
commercial farm management for efficient and accurate egg production forecasting.

The article of Gonzalez-Mora et al. [6] examines the impact of environmental control strategies (ECSs) on
hen-day egg production (HDEP) and daily egg cleanliness (EGC) in cage-free aviary housing systems. Utilizing
Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), the study evaluated various ECSs,
including reduced litter surface area, heated floor with oil sprinkling, and litter absorbent with oil sprinkling. The
study found that ECSs did not disrupt egg production, with HDEP averaging 97.6% and EGC 87.0%. The Random
Forest model, with a 14-day window, effectively predicted HDEP fluctuations, achieving a RMSE of 0.176%
and 0.368%, and R? of 0.94 and 0.78 for training and testing datasets, respectively. Temperature emerged as the
dominant factor influencing egg production, followed by hen’s age and relative humidity. A scenario analysis
indicated that a 5% increase in temperature could negatively impact egg yield, highlighting the significance of
maintaining optimal environmental conditions for maximizing productivity in cage-free aviary systems.

The work of Magemo et al. [[7] explores the application of various machine learning algorithms to forecast
egg production, aiming to enhance both farm-level and national agricultural economics. The study evaluates four
machine learning models: Artificial Neural Network (ANN), Fuzzy Logic, Random Forest, and Support Vector
Machine (SVM), each using different sets of input features. The ANN, despite its popularity and high mean
feature value, struggles to extract core features due to its limited dataset size, impacting model stability. Fuzzy
Logic, employing numerous features, also suffers from small dataset limitations, yielding high prediction accuracy
but with a notable relative error of 0.11744. Random Forest and SVM, though efficient with fewer features and
datasets, demonstrate varying success, with SVM achieving a high accuracy of 98%. However, these methods lack
comprehensive feature utilization, reducing model robustness.

Bumanis et al. [4] investigates the application of machine learning models to predict hen egg production with
limited data. Comparing traditional non-linear models, such as the Modified Compartmental Model, with machine
learning models like LSTM (Long Short-Term Memory), CNN (Convolutional Neural Network), XGB Regressor,
and Random Forest Regressor (RF). They conclude that the LSTM, RF, and XGB models overall showed the
best performances. The LSTM model achieved the best performance with a two-day sliding window, presenting
a MAPE of 5.39% and a Root Mean Squared Percentage Error (RMSPE) of 7.75%. In contrast, the Modified
Compartmental Model had a MAPE of 9.13% and an RMSPE of 14.81%. These results indicate that machine
learning models are effective in adapting to variations in egg production data, providing more accurate forecasts
compared to traditional non-linear models.

3 Materials and methods

3.1 Database

The raising of laying hens involves three main phases: brooding, rearing, and laying [3]]. During the brooding
phase (0 to 10 weeks), chicks receive intensive care, including temperature control and balanced nutrition. In
the rearing phase (10 to 17 weeks), the birds develop rapidly and require adequate nutrition. In the laying phase
(from the 17th week onward), hens reach sexual maturity and begin laying eggs, necessitating specific feeding
and management conditions. To ensure satisfactory development of pullets in all phases, it is crucial to provide
high-quality feed that meets their nutritional needs. These needs are influenced by a variety of factors, including
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breed, age, temperature, environment, health status, and rearing systems [8]].

The dataset used in this study comprises 1761 records of the Hy-Line breed, divided into four distinct batches:
HI1, H2, H3, and H4. These batches were housed at different periods, allowing for the analysis of temporal and
environmental variables on egg production. The age of the birds considered in the analysis ranges from 23 to 85
weeks (161 to 601 days), covering a period of 63 weeks. The dataset was provided by the Nater Coop cooperative,

located in the municipality of Santa Maria de Jetib4, ES, which operates an avian condominium. The dataset
includes the following attributes:

 Batch: Identifying code of the bird batch.

* Age in Days: Age of the birds in days.

* Max Temperature: Maximum temperature recorded on the egg collection day.

* Min Temperature: Minimum temperature recorded on the egg collection day.

* Feed Consumption (Day): Amount of feed consumed, in grams, per bird on the egg collection day.
Water Consumption (Day): Amount of water consumed, in milliliters, per bird on the egg collection day.

% Production: Daily production percentage, calculated as the number of eggs divided by the number of live
birds.
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Figure 1. H1.
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Figure 2. H2.
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Figure 3. H3.
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Figure 4. H4.

The target variable in this study is the production percentage (% Production), while the other variables, except
for the batch code, were used as predictors in the machine learning model. The graphs showing the production
percentage over the days for the four batches are presented in Figure [T} Figure [2] Figure 3] and Figure ] The
Y-axis represents the production percentage, and the X-axis represents the age of the birds in days. The curves
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of the graphs for the four batches (H1, H2, H3, and H4) show notable differences, although all exhibit a general
decreasing trend over time. Batch H1 starts with high and relatively stable production but experiences significant
fluctuations and a sharp decline around 400 days. Batch H2 maintains consistent high production for a longer
period, showing a gradual decrease and instabilities approaching 500 days. Batch H3 follows a similar pattern,
with a strong start and a more pronounced and irregular decline, especially after 300 days. Finally, Batch H4,
while also starting with high production, displays greater variability over time, with frequent peaks and troughs,
and a less uniform decrease compared to the other batches. These differences can be attributed to variations in
environmental conditions, management practices, and other factors specific to each batch.

3.2 Methods

The sliding window technique is widely used in time series modeling to create training and testing datasets.
This technique involves creating fixed-size temporal windows that move along the time series, capturing subse-
quences of the original data. Each window consists of a set of historical data used to predict future values. For
example, when using a window size of 7, data from the past seven days are used to predict the value for the
next day. The sliding window technique is effective in capturing temporal patterns and trends, enabling machine
learning models to make more accurate predictions, especially when working with multivariate time series where
multiple interdependent variables influence the target variable [9].

By applying sliding windows, it is possible to include relevant temporal information from various variables,
enhancing the predictive capability of the models. Additionally, this technique helps maintain the temporal conti-
nuity of the data, which is crucial for accurately forecasting future events. The choice of window size is a critical
aspect and should be determined based on the nature of the data and the periodicity of the expected variations.
Smaller window sizes can capture short-term variations, while larger sizes may be more effective for capturing
long-term trends.

In this study, the sliding window technique was used to create the training and testing datasets, allowing for
a robust evaluation of the machine learning models applied to egg production forecasting. Similar to the work of
Bumanis et al. [4]], different window sizes (1, 2, 3, 5, 7, and 14 days) were tested to determine the optimal window
size for each model, with predictions made one day ahead.

In predicting the percentage of egg production, different machine learning models are applied to optimize
prediction accuracy. For the purpose of this research, the following models were selected:

* Ridge Regression - This is a form of linear regression that includes a regularization term (L2 regularization),
which helps to prevent overfitting by penalizing large coefficients. Ridge Regression is particularly useful
in situations where there is multicollinearity among the predictor variables, as it shrinks the coefficients of
correlated predictors towards each other, distributing the impact more evenly and improving the model’s
stability and generalization [10]].

* Random Forest - This is an ensemble learning method that operates by constructing multiple decision trees
during training and outputting the mean prediction of the individual trees. Random Forests are known for
their robustness and accuracy, as they reduce overfitting by averaging multiple trees. Each tree is trained on
a bootstrapped sample of the data, and at each split in the tree, a random subset of features is considered,
which decorrelates the trees and enhances the model’s ability to generalize to unseen data [[11]].

* XGBBoost - The Extreme Gradient Boosting is a powerful and efficient implementation of gradient boosting
algorithms. It is designed for speed and performance and can handle large datasets with high dimensionality.
XGBoost works by sequentially adding models to correct errors made by previous models, focusing on hard-
to-predict cases, and combining the strengths of these “weak” models to form a “strong” learner. It includes
several regularization terms (L1 and L2) to control model complexity and prevent overfitting, making it
robust and reliable for a wide range of predictive tasks [12].

e MLP - The MLP Regressor is a type of feedforward artificial neural network that consists of multiple layers
of neurons (perceptrons), including input, hidden, and output layers. Each neuron in one layer connects to
every neuron in the next layer, with each connection having an associated weight. The MLP uses non-linear
activation functions to capture complex relationships and patterns in the data. It is trained using backprop-
agation, where the error is propagated backward through the network to update the weights, minimizing
the difference between the predicted and actual values. This makes the MLP Regressor highly effective for
modeling non-linear relationships and interactions between variables [13]].

The data were divided into training and test sets. The H1, H2, and H3 batches were used for training the
models, while the H4 batch was reserved for testing. This division results in approximately 75% of the data for
training and 25% for testing
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3.3 Metrics

In this study, we used two metrics: Mean Squared Error (MSE) and Mean Absolute Percentage Error
(MAPE). The formulas for these metrics are presented in Table |l The MSE measures the average of the squared
differences between predicted and actual values, more severely penalizing larger errors and being sensitive to out-
liers. It is particularly useful for identifying the variability of prediction errors. The MAPE calculates the average
of the absolute differences between predicted and actual values, expressed as a percentage of the actual values.
It enables the comparison of model accuracy across different scales by interpreting errors in relative terms. Note
that, in Table y; means the observed value; g; means the predicted value; and n is the number of records.

Table 1. Criteria used for model evaluation.

Criteria Equation
1 o
Mean Squared Error MSE = — Z(yl — i)
n
i=1
100 o~ |yi — 9
Mean Absolute Percentage Error  MAPE = — Z u’
n Yi

=1

4 Results

Table [2| presents the results obtained by each machine learning model (columns) for different window sizes
(first column) and metrics (second column). The cells with a gray background indicate the best (lowest) values per
row, and the bold markings highlight the best values in the table for both MSE and MAPE. The Ridge Regression
model presented the best results in almost all windows, except for the window of size 2. The best performance
in terms of prediction accuracy, considering all windows, was also achieved with Ridge Regression, with an MSE
value of 19.740301 and a MAPE of 0.038132 in the window of size 7. This result suggests that the Ridge Regres-
sion model is effective in predicting the percentage of egg production when using a window of size 7.

Table 2. Metric values by model and different window sizes

Windows Size Error Metric MLP RF Ridge XGBoost
1 MSE 24.6131 25.1327 24.3887 27.7447
1 MAPE 0.0427 0.0439 0.0416 0.0458
2 MSE 23.0443 22.7263 23.4308 24.8256
2 MAPE 0.0406 0.0412 0.0408 0.0437
3 MSE 21.6610 21.4344 21.3102 23.5427
3 MAPE 0.0402 0.0400 0.0398 0.0422
5 MSE 21.7703 22.4404 21.2953 24.4543
5 MAPE 0.0401 0.0413 0.0393 0.0433
7 MSE 20.9387 22.6219 19.7403 23.5526
7 MAPE 0.0393 0.0409 0.0381 0.0417
14 MSE 25.0185 24.3415 23.1969 272132
14 MAPE 0.0439 0.0433 0.0410 0.0457

Table 3. The best results of model evaluation

Model MSE MAPE Window Size
MLP 20.939 0.039 7
RF 21.434 0.040 3
Ridge 19.704 0.038 7
XGBoost 23.553 0.041 7

The windows of size 1 and 14 presented the worst results across all models. The XGBRegressor, although
generally robust, showed the worst performance. The analysis of the results indicates that window size is a critical
factor that significantly influences the models’ performance. In particular, windows of size 7 seem to provide a
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good balance between the amount of historical data used and the accuracy of the predictions. Table [3]shows the
best result of the MAPE metric (third column) for each model (rows). The MLP and XGBoost also achieved their
best performance with the window of size 7, while the best result for Random Forest was obtained with the window
of size 3. Figure [5]presents the graph showing the actual (blue) and predicted (orange) values of the percentage of
egg production for Ridge Regression, considering a window size of 7, and Figure [6]shows the graph for XGBoost.
Next to each graph, an enlarged image is presented to facilitate the visualization of the section where the XGBoost
prediction failed to follow the trend of the curve.
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Figure 5. Best result for window size of 7 days: Ridge Regression (MAPE = 3.9%).
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Figure 6. Worst result for window size of 7 days: XGBoost (MAPE =4.17%).
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Compared to the study by Bumanis et al. [4]], where the best result was obtained with the LSTM model using
a window size of 2, resulting in a MAPE of 5.390%, our study stood out, achieving the best MAPE of 3.81% with
the Ridge Regression model using a window size of 7. The worst result of our study was a MAPE of 4.583%, still
better than the best result of the compared study. Comparing the algorithms common to both studies, the Random
Forest in our study obtained the best result with a window size of 3, presenting a MAPE of 4.00%. In the study
by Bumanis et al. [4], the best result for the Random Forest was with a window size of 5, resulting in a MAPE of
6.077%. For the XGBoost algorithm, our study showed the best result with a window size of 7, achieving a MAPE
of 4.10%, while in the study by Bumanis et al. [4], the best result for XGBoost was with a window size of 14,
presenting a MAPE of 6.114%. This difference in results may be associated with the size of the dataset and the
predictive variables used in each study. We were able to confirm the validity of the methodology used in the study
by Bumanis et al. [4]].

5 Conclusions

Similar to the study by Bumanis et al. [4], this study demonstrated the effectiveness of using machine learn-
ing models in scenarios with limited data sets. The contributions of this study are significant for predicting egg
production in poultry farms, including small-scale producers who may not have records of many variables or a
large dataset. The application of machine learning techniques with the sliding window methodology provides a ro-
bust tool for improving the management and optimization of egg production, enabling more informed and efficient
decisions.

The Ridge Regression model stood out by achieving the best results in terms of MSE and MAPE, especially
with a window size of 7 (one week). This performance suggests that Ridge Regression is effective in handling mul-
ticollinearity among predictor variables and provides stable and accurate predictions. On the other hand, models
like XGBoost and Random Forest, although generally effective in many applications, may require finer hyperpa-
rameter tuning to improve their performance in this specific context. Furthermore, the analysis of different window
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sizes showed that a window size of 7 offers a good balance between the amount of historical data used and the
accuracy of the predictions. Smaller and larger window sizes showed inferior performance, highlighting the impor-
tance of carefully selecting the window size to adequately capture the temporal dynamics of the data. The analysis
revealed that the choice of machine learning model and window size are crucial factors that significantly influence
predictive performance. However, it is important to emphasize that obtaining a larger dataset and more predictor
variables could potentially alter the results, possibly further improving model accuracy.

For future research, it is recommended to explore hyperparameter tuning and the inclusion of additional
variables in the model, as well as the application of advanced feature selection techniques. Such enhancements can
potentially further improve the performance of predictive models. It is also intended to apply these techniques to
other chicken breeds. Additionally, the implementation of AutoML techniques using genetic algorithms can help
identify the most effective model configurations for different data contexts.
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