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Abstract. In this work, we propose a position-based space-time finite element formulation for incompressible
Newtonian flows under a total Lagrangian description. This formulation is suggested within the context of finite
strain free-surface flows and differs from the traditional finite element approach for fluid dynamics by utilizing
current nodal positions as the main variables instead of nodal velocities. In contrast to time-marching methods,
space-time formulations involve applying the finite element technique not only to the spatial domain but also to
the temporal domain. The proposed approach employs a finite element discretization that can be unstructured or
structured in space, but is always structured in time. Thus, the space-time shape functions are expressed as a tensor
product of linear shape functions in the spatial direction and specially designed quadratic shape functions in the
temporal direction. Consequently, the space-time domain is divided into time slabs that are solved progressively,
with the final velocities and positions from the previous time slab serving as initial conditions for the current one,
thereby reducing the dimension of the discrete system of equations. The proposed shape functions in the temporal
direction yield a system of equations of the same size as standard time-marching methods, but with advantages
stemming from the space-time discretization: different stability and high-frequency dissipation can be achieved
based on the selection of the time test functions. To solve the incompressible problem stably, we employ mixed
equal-order position-pressure finite elements with Petrov-Galerkin/pressure stabilization (PSPG). This formula-
tion possesses several significant features that justify its development: 1) the space-time formulation facilitates
dynamic re-meshing by permitting the spatial discretization at the end of one time slab to differ entirely from
the spatial discretization at its beginning, thus extending its applicability to flows with undefined distortion and
topological changes; 2) by considering positions as variational parameters, it becomes straightforward to couple
with Lagrangian hyper-elastic solid solvers, which may also be formulated in terms of positions or displacements
in a monolithic way. Numerical example conducted to validate the formulation demonstrate its robustness and
efficiency for finite strain free surface flows, including phenomena such as sloshing.
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1 Introduction

The Finite Element Method has been successfully used in the context of incompressible fluid dynamics under
the Eulerian description, where the unknowns are the nodal velocities and pressures, as one can see from Hughes
et al. [1], Tezduyar et al. [2], and Tezduyar et al. [3]. However, the Eulerian formulation has some limitations, such
as the need for stabilization techniques to prevent spurious oscillations arising from the convective terms present in
the governing equations, as well as its inability to be directly applied to moving boundary flows, as it is developed
over a fixed domain. A robust approach for moving-boundary flows is the Arbitrary Lagrangian-Eulerian (ALE)
formulation [4], which allows for dynamic mesh movement independent of the fluid motion. However ALE solvers
cannot be directly applied to problems with very large distortions in the fluid domain or with topological changes
in the domain, unless they are combined with re-meshing techniques.

Another option for free-surface flows is to employ the Lagrangian description, which avoids the convec-
tive terms from the Navier-Stokes equations at the same time that automatically solves the free-surface position
problem. This approach also simplifies the monolithic coupling with structures and enhances efficiency in fluid-
structure interaction problems Idelsohn et al. [5]. This kind of method can be directly applied free surface flows
with finite distortions, however, the combination with re-meshing is necessary for large distortions, that may lead
to mesh entanglement and specially to cases with topological changes of the fluid domain.
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Some authors have developed methods using the updated Lagrangian description, such as Radovitzky and Or-
tiz [6] and Onate and Carbonell [7], using velocity as the main variable, updating coordinates through an additional
numerical integration procedure over time. Avancini and Sanches [8] introduces a total Lagrangian position-based
formulation for incompressible flows. The position-based approach is more compact than displacement-based for-
mulations and eliminates the need for the position update step required in velocity-based formulations. However,
the total Lagrangian framework is limited to cases of flows with finite deformations, as the update of the reference
in necessary when re-meshing is applied.

In dynamic scenarios, time-marching methods are frequently employed to solve systems of ordinary differ-
ential equations resulting from any spatial discretization technique. A widely recognized implicit time-stepping
approach is the average acceleration method, which is a variant of Newmark’s method Newmark [9]. In contrast
to time-stepping methods, Space-Time (ST) formulations, developed initially by Hughes and Hulbert [10], apply
the finite element method across both spatial and temporal domains. This approach is known for its advantages in
stability and accuracy, especially in modeling problems within fixed spatial domains. Over time, the methodology
has been refined and effectively used in a wide array of time-dependent issues. These include linear and nonlinear
elastodynamics Dumont et al. [11], structural problems involving continuous damage mechanics Wada et al. [12],
fluid-structure interactions Bazilevs et al. [13], and fluid flow scenarios von Danwitz et al. [14].

Structured space-time meshes extend a spatial discretization into the temporal dimension, resulting in a dis-
cretization with space-time prismatic elements formed by the Cartesian product of spatial and temporal finite
elements. This approach resembles time-marching methods, allowing solutions to be sequenced and information
to propagate along the positive time axis. In contrast, using unstructured meshes allows the problem to be solved
in one step without the need for sequencing, which can be advantageous for problems with complex geometries
and topological changes, but is significantly more computationally expensive due to the high-dimensional mesh.
According to Foteinos and Chrisochoides [15], a 4D mesh (3D spatially) is approximately 100 times slower than a
3D mesh when using Delaunay triangulation.

In this work we present a position-based space-time finite element formulation for incompressible Newtonian
free-surface flows under a total Lagrangian description. This formulation is introduced in the context of finite
distortion free-surface flows and should be modified in future works to be extended to more complex problems.

The proposed approach employs a finite element discretization that can be unstructured or structured in space,
but is always structured in time, with specially designed quadratic shape functions in the time direction, enabling
progressive solution and resulting a method with similar computational costs to the standard time-marching ap-
proaches.

1.1 Governing Equations in the Total Lagrangian Description

The governing equations for newtonian incompressible flows in the total Lagrangian description can be found
in Avancini and Sanches [8], and are given by the boundary and initial values problem defined over the space-time
domain Q = Ω× (0, T ):

∇ · PT + bn = ρÿ in Ω× (0, T ), (1)

J − 1 = 0 in Ω× (0, T ), (2)

y(x, 0) = y(x, 0) in ΓD × (0, T ), (3)

P · n0 = t0 on ΓN × (0, T ) (4)

and

y(x, 0) = y0(x) on Ω, (5)

where P is the first Piola-Kirchhoff stress tensor, y represents the current coordinates, bn the volumetric force per
unit reference volume, ρ the mass density, ÿ the material point acceleration field, J the Jacobian determinant of the
deformation function, n0 the normal unity vector to the boundary in the initial configuration, t0 the traction vector
on the Neumann boundary regarding the initial configuration, and y0=x the initial coordinates. Ω represents the
initial spatial domain, T the final instant, ΓN and ΓD the initial Neumann and Dirichlet boundary, respectively.

The constitutive law for incompressible Newtonian flows, in the Lagrangian reference framework, is given
by (see Avancini and Sanches [8]):
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S = S′ − pJC−1 = D0 : Ė− pJC−1 (6)

where S is the second Piola stress tensor, S′ is the deviatoric part of S, p is the pressure, D0 is the constitutive
tensor in the Lagrangian reference, Ė is the rate of the Green-Lagrange strain tensor and C is the right Cauchy
Green stretch.

The Green-Lagrange strain is an objective Lagrangian measure of strain given by:

E =
1

2
(FTF− I) =

1

2
(C− I), (7)

where F = ∇xy is the deformation gradient. Therefore, the rate of Green-Lagrange strain is given by:

Ė =
D

Dt
(E) =

1

2
(ḞTF+ FT Ḟ). (8)

The second Piola stress tensor S is related to the first Piola stress tensor P and to the cauchy stress tensor σ
by:

S = F−1P = JF−1σF−T . (9)

2 Space-Time Finite Element Formulation

Unlike standard finite element with time-marching methods, where integrations are performed over the spatial
domain and then the corresponding temporal approximations were made, in the space-time finite element context
the space an time dimensions are both discretized by finite elements, with space-time shape functions.

In the case of space-time finite element methods with structured time discretization, the discrete problem can
be subdivided into a number of space-time slices Qn, which are constructed between time levels n and n + 1.
Consequently, the space-time domain divided into time slabs can be solved progressively, with the final velocities
and positions from the previous space-time slice serving as initial conditions for the current one, and thereby
reducing the dimension of the discrete system of equations. As our formulation is described in terms of the initial
spatial configuration, we need to define an support space-time slab Q0

n for purpose of integration, which is defined
by the slice of a regular extrusion of the initial configuration Ω0 along time direction.

For time-structured space-time meshes, the vector of space-time shape functions N can be constructed by the
tensor product of spatial shape functions vector ϕ with temporal shape functions ψ, so that, in an index notation
we can write:

Nα
a = ϕa(ξ)⊗ ψα(θ), (10)

where ϕa are the shape functions associated to each spatial node a, and ψαthe shape functions associated to each
temporal node α, ξ is the vector of non-dimensional support coordinates in space direction and θ is the non-
dimensional coordinate in time direction. In this way, a space-time node can be defined by the indexes pair (a,α),
and the spatial and temporal discretizations can be decoupled.

In this work, we restrain our attention to 2D spatial cases, so that the space-time finite element is constructed
by the product of a triangular element for spatial discretization with a line element for temporal discretization,
resulting into a prismatic space-time finite element with triangular basis and height in the time direction.

For spatial discretization, we use linear shape functions for approximating position and pressure, however,
in time direction we need to be able to represent the second derivative os position (acceleration), so that we
design special quadratic shape functions for interpolating position trial solution, while we keep constant time
approximation for representing the pressure trial solution.

Thus, the functions that represent the initial configuration of the fluid is given by xh(ξ) = ϕa(ξ)xa, where xa

is the initial coordinate of spatial node a, while the current configuration of any arbitrary point within the time-slice
Qn is given by:
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yh(ξ, θ) = ϕa(ξ) ψ
α(θ)︸ ︷︷ ︸

Nα
a (ξ,θ)

Υα
a = ϕa(ξ) y

t
a(θ) (11)

where Υa = {yn
a ,y

n+1
a , ẏn

a} corresponds to the vector of nodal parameters of spatial node a in the time slice Qn

and ẏn
a is the velocity of the spatial node a at instant n (i.e., velocity of space-time node (a, n). We can write the

position of spatial node a along time, yt
a(θ), as:

yt
a(θ) = ψ1(θ)y

n
a + ψ2(θ)y

n+1
a + ψ3(θ)ẏ

n
a (12)

The pressure trial function within a space-time slice Qn is given by:

ph(ξ, θ) = ϕa(ξ)p
n+1
a . (13)

Although other possibilities for pressure can be explored, in this work we make this choice seeking the smallest
computational cost.

2.1 Space-time finite element formulation for incompressible flows

Applying the weighted residual method to Eqs. (1) and (2), integrating over the space-time domain Q0
n, we

formulate the problem as follows: find the pair of trial functions (yh, ph) ∈ Sh
y ×Sh

p such that for all test functions
wh ∈ Vh

y and for all test functions qh ∈ Vh
p , the following relations are satisfied:

∫
(Q0

n)
h

(∇x · (FhSh) + b0 − ρÿh) ·whd(Q0
n)

h (14)

=

∫ tn+1

tn

∫
Ωh

0

(∇x · (FhSh) + b0 − ρÿh) ·whdΩh
0dt = 0

and

∫
(Q0

n)
h

(Jh − 1)qh d(Q0
n)

h =

∫ tn+1

tn

∫
Ωh

0

(Jh − 1)qh dΩh
0dt = 0 (15)

The finite-dimensional trial spaces Sh
y and Sh

p and test spaces Vh
y and Vh

p = Sh
p comprise suitably differ-

entiable functions to effectively approximate the mentioned functions. It is worth mentioning that, due to the
sequential and structured temporal integration, it is possible to perform spatial and temporal integrations indepen-
dently.

The trial functions for momentum and incompressibility equations (Eqs. (14) and (15)) within one space-time
slice Q0

n are given by:

wh(ξ, θ) = ϕa(ξ) ψ
α(θ)wα

a (16)

and

qh(ξ, θ) = ϕa(ξ)q
n+1
a (17)
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2.2 Ladyzhenskaya-Babuška-Brezzi Conditions

For incompressible flows, using the same shape function for the spatial interpolation of positions and pressure
does not satisfy the Ladyzhenskaya-Babuška-Brezzi (LBB) conditions [16]. To enable the application of the same
approximation for both fields, the Pressure Stabilized Petrov-Galerkin (PSPG) method is employed by adapting
the method initially developed for Eulerian formulations [17] to the Lagrangian formulation presented in [8]. To
keep the equations concise, we will omit the stabilization terms from the equations, however they are important to
ensure consistent pressure fields.

2.3 Slice by Slice Solution Procedure

Lets consider only the first space-time slice Q0. Notice that the initial conditions y0 and ẏ0 need to be
satisfied, meaning that the first and the last unknowns of nodal position in Eq. (12) are known. In this way, we
can solve sequentially each space-time slice, applying the position and velocity field calculated at the end of the
previous space-time slab as initial conditions to the current one.

To enforce the initial conditions and get a defined system when solving the problem for Q0
n, we set the test

functions parameters wn
a and wn+1

a in Eq. (16) to zero, similarly to the strategy developed by Mergel et al. [18] in
the solid mechanics context, so that, giving the arbitrariness of wn+1

a , Eq. (14) becomes

∫ tn+1

tn

(∫
Ωh

0

ρϕaÿ
h + (Dh

0 : Ėh) · (Fh)T :
∂ϕa
∂x

− phJh(Ch)−1 · (Fh)T

−
∫
Γh
0

th0ϕadΓ
h
0 −

∫
Ωh

0

bh
0ϕadΩ

h
0

)
· ψ3 dt = 0.

(18)

Considering the arbitrariness of qn+1
a , eq. (15) becomes:

∫ tn+1

tn

∫
Ωh

0

(Jh − 1)ϕa dΩh
0 dt = 0. (19)

Notice that this procedure results a nonlinear system with the same number of degrees of freedom as the
one obtained with standard time-marching methods. The integration is performed numerically using Hammer
quadrature points in the spatial direction and Gauss quadrature points in the time direction, and the nonlinear
system of equations is solved iteratively with Newton-Raphson method.

3 Numerical example - Slosh with small amplitude

This example consists on the simulation of a small amplitude sloshing problem, avoiding the need for re-
meshing. The initial geometry and data are presented in Fig. 1.

Figure 1. Initial geometry and problem data

To verify the proposed formulation, we consider different time steps (height of the space-time slice): ∆t =
0.002, 0.008, 0.032, and 0.128), while keeping the spatial discretization with 944 elements and 513 nodes. The
vertical position of the free surface at the right wall along time is in Fig. 2, where it is compared to the results
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Figure 2. Wave height on the right wall - Analysis considering four different time steps and comparison with
literature results.

from [19], [6], and [20] that employed time marching methods, showing good agreement. Snapshots of velocity
for different instants are shown in Fig. 3.

Figure 3. Snapshots of velocity distribution for different instants.

4 Conclusions

This study has introduced a total Lagrangian space-time finite element formulation for simulating free-surface
flows under finite strains. The formulation stands out by utilizing current nodal positions and pressure as primary
variables, diverging from traditional velocity-pressure-based finite element methods in fluid dynamics. The solu-
tion of the space-time problem is performed progressively and the order of the nonlinear system to be solved for
each time advance step is the same as the one for standard time-marching methods, leading to similar computa-
tional cost.

By utilizing positions as variational parameters, the monolithic coupling with Lagrangian hyper-elastic solid
solvers becomes direct, thereby broadening the formulation’s applicability to a wider range of fluid-structure inter-
action problems.

As shown in the numerical example, this formulation has been verified against literature confirmed the ex-
pected efficiency. In future studies this method shall be extended to updated Lagrangian description and associ-
ated to re-meshing procedures to enable applications at any distortion scale, including problems with topological
changes, and also coupled to solid dynamic solver.
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