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1Laboratório de Mecânica Computacional e Visualização (LMCV), Departamento de Engenharia Estrutural e
Construção Civil
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Abstract. This work presents a NURBS-based isogeometric formulation for geometrically nonlinear analysis
of shells based on the Reissner-Mindlin theory and the degenerated solid approach. The geometrically nonlinear
effects are incorporated using the Total Lagrangian approach allowing the analysis of shells with large displacement
and rotations. Different numerical integrations schemes are used in order alleviate the locking problem. The
accuracy of the proposed formulation is assessed using a well-known benchmark of nonlinear shells.
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1 Introduction

Shells are curved surface structures whose thickness is much smaller than other dimensions. Due to their high
slenderness, shell structures are vulnerable to collapse caused by loss of stability. Thus, the structural analysis of
shells should include the geometrically nonlinear effects due to large displacements and rotations.

The ability of Isogeometric Analysis (IGA) to exactly describe the geometry of the problem independent of
the degree of discretization and to allow easy refinements has led to its increasing application in shell analysis. A
Reissner-Mindlin formulation based on the degenerated solid approach was initially proposed by Uhm and Youn
[1] for T-Splines, which was later extended to a nonlinear formulation for isogeometric analysis by Dornisch et al.
[2], using exactly calculated director vectors for NURBS.

It is important to note that IGA does not remove the shear and membrane locking presented by fully integrated
shell elements based on Reissner-Mindlin theory [3]. Thus, several alternatives have been proposed in the literature
to address the locking problem, such as mixed formulation and reduced integration [4].

This work presents a NURBS-based isogeometric formulation for geometrically nonlinear analysis of shells
based on the Reissner-Mindlin theory and the degenerated solid approach. The geometrically nonlinear effects are
incorporated using the Total Lagrangian (TL) approach allowing the analysis of shells with large displacement and
rotations. Furthermore, different numerical integration schemes are used in order to alleviate the locking problem.
The accuracy of the proposed formulation and numerical integration schemes is assessed using a well-known
benchmark of nonlinear shells.

The rest of the paper is organized as follows. Section 2 describes the nonlinear isogeometric formulation.
Section 3 presents the numerical example used to assess the efficiency of the present formulation. Finally, Section
4 presents the concluding remarks of the study.
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2 Isogeometric formulation

A NURBS surface is defined by a given control net Pa(n × m), and knot vectors Ξ = [ξ1, ξ2, ..., ξn+p+1]
and Ω = [η1, η2, . . . , ηn+p+1] as:

S(ξ, η) =

np∑
a=1

Ra(ξ, η)Pa. (1)

where np is the number of control points and Ra(ξ, η) are the bivariate rational basis functions given by:

Ra(ξ, η) =
Ni,p(ξ)Nj,q(η)wij

n∑̂
i=1

m∑̂
j=1

Nî,p(ξ)Nĵ,q(η)wîĵ

=
Ni,p(ξ)Nj,q(η)wij

W (ξ, η)
, (2)

where Ni,p(ξ) and Nj,q(η) are univariate B-Splines basis functions, wij is the control point weight, and W (ξ, η)
is the bivariate weighting function. It is worth noting that the global basis index a is related to tensor product basis
indexes (i, j) by:

a = m(i− 1) + j, i = 1, 2, . . . n, j = 1, 2, . . .m and np = mn. (3)

In the degenerated solid approach, the geometry of the shell at a generic time t is represented by a point xs

of the mid-surface and corresponding unit normal vector v3 and thickness h. Thus, a point x within the shell is
defined by:

xt(ξ, η, ζ) = xt
s(ξ, η) + ζ

h(ξ, η)

2
vt
3(ξ, η), (4)

where −1 ≤ ξ ≤ +1, −1 ≤ η ≤ +1 are the parametric coordinates tangent to the shell mid-surface and
−1 ≤ ζ ≤ +1 is the parametric coordinate along the thickness. Using the degenerated solid approach, the shell
geometry is defined as:

xt =

np∑
a=1

Ra x
t
a +

np∑
a=1

ζ Ra
ha

2
vt
3a (5)

where xa are the control points of the shell mid-surface, v3a is a normal vector, and ha the thickness associated
with control point a.

Unlike finite element nodes, NURBS control points are usually not on the shell surface, complicating the defi-
nition of the director vectors and the consideration of rotational degrees of freedom. The definition of these vectors
is critical for Reissner-Mindlin shells and several approaches have been proposed in the literature. Some tech-
niques require each control point to be mapped to a corresponding point on the surface. The surface points closest
to the control points and the anchor points represented in the parameter space are some of the proposed options
[1, 4]. As the control points are not distributed equally in the parameter and physical spaces, these approaches
provide less accurate results as the order of the basis function increases. On the other hand, the initial director
vectors at the control points can be computed to provide exact interpolated director vectors at integration points,
producing the desired convergence behavior [2]. Unfortunately, this procedure is complex and computationally
costly. Furthermore, new directors must be computed if the numerical integration scheme is modified.

Thus, in this work a simpler approach is adopted, where the exact director vectors at the Greville points are
considered as known values for the system of equations and the director vectors at control points are computed
solving a simple linear equation system [4]. The so-called Greville points, ti = (tiξ , tiζ ), define in the parameter
space as [5]:

tiξ =
ξi+1 + · · ·+ ξi+p

p
(6)

The director vectors defining the shell local system at t = 0 are computed as:

v03 =
S,ξ(tiξ, tiη)× S,η(tiξ, tiη)

||S,ξ(tiξ, tiη)× S,η(tiξ, tiη)||
, v01 =

e2 × v03
||e2 × v03||

, v02 = v03 × v01 (7)

where v0
3 is perpendicular and v01 and v02 are tangent to the initial shell midsurface.

In each Greville point, the local basis system has nine components denoted by v0ij (where i, j = 1, 2, 3),
requiring the separate solution of nine assembled systems of equations on the patch in the following form:

vGr
ij (tiξ, tiη) =

np∑
a=1

Ra(tiξ, tiη) vcpija i, j = 1, 2, 3 (8)

in which vGr
ij are known basis vectors at the Greville points, np is the number of control points and vcp

ija are
unknown basis vectors at the control points.
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2.1 Displacements and strains

The displacements of a generic point within the shell is given by the difference between its coordinates at
times 0 and t:

u = xt − x0 (9)

Considering Eq. (5), the displacement field is given by:

u =

np∑
a=1

Ra ua +

np∑
a=1

ζ Ra
ha

2

(
vt
3a − v0

3a

)
(10)

where ua are the mid-surface displacements of control points. The first term represent the effects of the mid-
surface translations and the second term represent the effects of the rotations of the normal vector around v1 and
v2. The displacements can be written in a compact form as:

u =

np∑
a=1

(Ra ua +Ha pa) (11)

where

Ha = ζ Ra, pa =
ha

2

(
vt
3a − v0

3a

)
(12)

Since large 3D rotations are not additive [6], the normal vector should be updated from t to t+∆t as

vt+∆t
3 = Qvt

3 (13)

where Q is an orthogonal rotation matrix depending on the incremental rotations α and β about vectors vt
1 and vt

2.
However, considering moderate rotation increments, it is possible to use the quadratic approximation [7]:

vt+∆t
3 = vt

3 − αvt
2 + β vt

1 −
1

2
(α2 + β2)vt

3 (14)

where

vt1 =
e2 × vt3

||e2 × vt3||
, vt2 = vt3 × vt1 (15)

The Total Lagrangian (TL) approach [7], where the stresses and strains are evaluated in the initial configu-
ration of the structure, is adopted in this work. This formulation is based on the use of Green-Lagrange strains
and Piola-Kirchhoff II stresses. The Green-Lagrange strains are computed from the displacement derivatives with
respect to the Cartesian coordinates:

εεε =



εx

εy

εz

γxy

γxz

γyz


=



u,x

v,y

w,z

u,y + v,x

w,x + u,z

v,z + w,y


+

1

2



u2
,x + v2,x + w2

,x

u2
,y + v2,y + w2

,y

u2
,z + v2,z + w2

,z

2(u,x u,y + v,x v,y + w,x w,y)

2(u,x u,z + v,x v,z + w,x w,z)

2(u,y u,z + v,y v,z + w,y w,z)


(16)

According to Eqs. (11), (12), and (16), the strains depend on the derivatives of the basis functions Ra and
ζ function with respect to the Cartesian coordinates (x, y, z). However, these functions are defined in terms of
parametric coordinates (ξ, η, ζ). In this work, the ζ coordinate is handled as an additional shape function and the
required derivatives with respect to the Cartesian coordinates are computed from:

Ra,x

Ra,y

Ra,z

 = J−1


Ra,ξ

Ra,η

0

 and


ζ,x

ζ,y

ζ,z

 = J−1


0

0

1

 , (17)
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where the Jacobian matrix (J) is given by:

J =


∑

Ra,ξ

(
xa + ζ

ha

2
v3xa

) ∑
Ra,ξ

(
ya + ζ

ha

2
v3ya

) ∑
Ra,ξ

(
za + ζ

ha

2
v3za

)
∑

Ra,η

(
xa + ζ

ha

2
v3xa

) ∑
Ra,η

(
ya + ζ

ha

2
v3ya

) ∑
Ra,η

(
za + ζ

ha

2
v3za

)
∑

Ra
ha

2
v3xa

∑
Ra

ha

2
v3ya

∑
Ra

ha

2
v3za

 . (18)

Due to the use of the TL approach, all Jacobian calculations are carried out in the initial (i.e. underformed)
geometry.

To simplify the mathematical derivations, it is interesting to write the Green-Lagrange strains, Eq. (16), as

εεε = εεε0 + εεεL = Hβ +
1

2
Aβ (19)

where

β =



u,x

u,y

u,z

v,x

v,y

v,z

w,x

w,y

w,z



=

np∑
a=1



Ra,x ua +Ha,x pxa

Ra,y ua +Ha,y pxa

Ra,z ua +Ha,z pxa

Ra,x va +Ha,x pya

Ra,y va +Ha,y pya

Ra,z va +Ha,z pya

Ra,x wa +Ha,x pza

Ra,y wa +Ha,x pza

Ra,z wa +Ha,x pza



(20)

with
Ha,x = Ra,x ζ +Ra ζ,x, Ha,y = Ra,y ζ +Ra ζ,y and Ha,z = Ra,z ζ +Ra ζ,z. (21)

Due to the use of the degenerated solid approach, matrices H and A are the same ones of 3D continuum elements
[8].

2.2 Stresses

Considering small strains and linear elastic behavior, the Piola-Kirchhoff II stresses can be computed from
Green-Lagrange strains in the local system using the generalized Hooke’s law [9]:

σ′ = C′ εεε′. (22)

The local system (x′, y′, z′), where the material properties of the shell are defined, is defined by the director vectors
v1, v2, and v3 where v1 and v2 are unit vectors tangent to the shell mid-surface.

The material properties need to be transformed to the global system of the problem, where the strain-
displacement relations are defined and the equilibrium of the structure is established. Strains in global system
(εεε) are related to local strains (εεε′) using the transformation matrix T [9]:

εεε′ = Tεεε. (23)

Moreover, the stresses and the constitutive matrix can be obtained in the global system in the same manner:

σ = TT σ′ ⇒ σ = Cεεε ⇒ C = TT C′ T. (24)

2.3 Equilibrium equations

The static equilibrium equations of the model can be obtained using the Principle of Virtual Work:

δU = δWext ⇒
∫
V

δεεεTσ dV =

∫
V

δuTb dV +

∫
S

δuTq dS, (25)
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where δu is the virtual displacement vector, δεεε is the virtual strain vector, and q and b are the surface and body
loads, respectively. The virtual strains are obtained by the variation of Eq. (19):

δεεε = H δβ +
1

2
δAβ +

1

2
A δβ = H δβ +A δβ (26)

On the other hand, the variation of Eq. (12) yields:

δpa =
ha

2
δvt

3a = pα
a δα+ pβ

a δβ (27)

where
pα
a =

ha

2
(−vt

2a − αvt
3a) and pβ

a =
ha

2
(vt

1a − β vt
3a) (28)

Furthermore, the variation of Eqs. (20) yields:

δβ =

np∑
a=1



Ra,x 0 0 pαax
Ha,x pβax

Ha,x

Ra,y 0 0 pαax
Ha,y pβax

Ha,y

Ra,z 0 0 pαax
Ha,z pβax

Ha,z

0 Ra,x 0 pαay
Ha,x pβay

Ha,x

...
...

...
...

...

0 0 Ra,z pαaz
Ha,z pβaz

Ha,z





δua

δva

δwa

δαa

δβa


=

np∑
a=1

Ga δua = G δu, (29)

Therefore, the virtual strains can be written as

δεεε = B δu, B = B0 +BL = HG+AG (30)

Considering arbitrary virtual displacements (δu) and displacement independent loads in Eq. (25) yields the
nonlinear equilibrium equations:

r(u, λ) = g(u)− λ f , (31)

where:
g =

∫
V

B
T
σ dV, f =

∫
V

NT b dV +

∫
S

NT q dS, (32)

and λ is the load factor. These equations should be solved in each step for r = 0 using an appropriate path-
following method, such as the Load Control, Displacements Control, or the Arc-Length Method, which are based
on Newton-Raphson method iterations [8].

2.4 Tangent stiffness matrix

The stiffness matrix is obtained by the differentiation of the internal forces vector:

KT =
∂g

∂u
= KE +KG (33)

From Eq. (32), the material stiffness matrix KE and the geometric stiffness matrix KG are given by:

KE =

∫
V

B
T
CB dV, KG = KG1

+KG2
+KG3

, (34)

where KG1 is the classical geometric stiffness matrix

KG1 =

∫
V

GT SG dV, S =


S 0 0

0 S 0

0 0 S

 , 0 =


0 0 0

0 0 0

0 0 0

 , S =


σxx τxy τxz

τxy σyy τyz

τxz τyz σzz

 . (35)

The geometric stiffness matrices KG2 and KG3 appear due to the use of a nonlinear update scheme for the normal
vector. These matrices are obtained using the methodology presented by Surana [10] considering Eqs. (14) and
(28).
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2.5 Integration and locking

Due to the use of the degenerated solid approach, a 3D integration scheme is adopted, where only two points
are required in the thickness direction (ζ) due to the use of the Reissner-Mindlin theory. On the other hand, the full
integration in the surface directions (ξ, η) requires p + 1 integration points for each parametric coordinate, where
p is the degree of the basis functions.

Unfortunately, the use of NURBS basis functions does not remove the shear and membrane locking presented
by fully integrated shell elements based on Reissner-Mindlin kinematics, especially for thin-walled shells and low-
order approximations [3]. Furthermore, the use of higher-order displacement approximations reduces but does
not eliminate locking, so several techniques are used to alleviate the locking problem, such as uniform reduced
integration and selective reduced integration [4].

It is well known that the uniform reduced integration scheme (RFEM) using p integration points for each
surface parametric coordinate alleviate, but not eliminate, locking of Reissner-Mindlin finite elements, while also
generating spurious (or hourglass) modes.

On the other hand [4], presented a isogeometric reduced integration scheme (RIGA) that eliminates shear and
membrane locking in NURBS-based linear analysis of shells. Owing to the high regularity of NURBS basis func-
tions with Cp−1 continuity obtained through k-refinement, this approach simultaneously increases the accuracy
and computational efficiency of IGA formulation, without generating spurious modes.

Therefore, the accuracy of Full, RFEM and RIGA integration schemes for geometrically nonlinear analysis of
shells is investigated in considering well-known benchmarks [11].

3 Numerical Example

The accuracy of the proposed formulation considering different numerical integration schemes is assessed
using a well-known benchmark, corresponding to the nonlinear analysis of a hemisphere with a pole cut of 18◦

and subjected to two pairs of loads located at antipodal points on the equator [11]. Due to the symmetry, only
a quarter of the structure is modeled, as shown in Figure 1(a). This figure also presents the geometry, material
properties, and boundary conditions. The shell is discretized using cubic NURBS meshes using Full, uniform
reduced (RFEM), and isogeometric reduced (RIGA) integration schemes.

P/2 P/2
A B

Symm.Symm.

E = 6.825 ⋅ 10⁷
ν = 0.3

R = 10

t = 0.04

Pmax = 400

z

yx

(a) Problem definition and 8×8 cubic mesh.

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

(Radial displacements at points A and B) / R

L
o

a
d

 (
P

)

Ref.

vA 8×8

vA 16×16

-uB 8×8

-uB 16×16

(b) Full (solid), RFEM (dashed), RIGA (dotted) load-deflection curves.

Figure 1. Hemispherical shell under point loads.

The Load Control Method with Newton-Rapshon iterations was used to perform the nonlinear analyses.
The load was applied using 20 uniform increments and the adopted tolerance for the force residual was 10−4.
Figure 1(b) shows the nonlinear load-deflection curves. The (RIGA) integration scheme presents a better accuracy,
especially for coarse discretizations. However, the results for the finer mesh (16×16) do not describe the complete
curve, reaching only 0.4 of the load factor.

With the refinement of the model, all integration schemes converged to the expected solution, so that the
results with the three integration schemes are almost identical to the reference. Finally, the results show that the
reduced integrations alleviate the locking problem, leading to a faster convergence. Also, as the computational cost
of uniform reduced integration is lower, this is a promising choice due to its efficiency.

Table 1 presents the number of iterations required to obtain the load-displacement curve for each integration
scheme. Quadratic convergence was obtained for all cases, except for RIGA with 16x16 mesh. The convergence
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behavior of Full and RFEM is practically identical.

Table 1. Total (TotIter) and average (AvgIter) number of iterations for each mesh and integration scheme.

Mesh 8x8 16x16

Integration Full RFEM RIGA Full RFEM RIGA

TotIter 112 113 122 119 120 261

AvgIter 5.60 5.65 6.10 5.95 6.00 32.62

4 Conclusion

This work presented a NURBS-based isogeometric formulation for geometrically nonlinear analysis of shells.
The total Lagrangian formulation is employed allowing for large displacements and rotations. A simple and ef-
ficient scheme is adopted to update the director vector, removing the restriction of small nodal rotations between
two successive load increments and providing quadratic convergence of equilibrium iterations.

Concerning the element integration, the results showed that isogeometric reduced integration can eliminate
locking even in coarser meshes. However, it presented convergence problems for finer meshes. On the other hand,
the uniform reduced integration scheme helps alleviate the locking phenomenon, improving result accuracy and
computational efficiency. However, full integration schemes tend to converge to the same solutions with model
refinement.

Further research will be carried out on the behavior of the proposed formulation for shells with other geome-
tries and loads, focusing on structural stability problems.
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