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Abstract. Computing the lift generated by an airfoil is crucial in aircraft design. The problem of
incompressible flow around an airfoil is herein studied as a weakly irrotational flow, resulting a div-
curl problem in a 2D double-connected domain. In traditional potential flow, H1(Ω) finite elements are
adopted and a cut in the original domain with additional constrain for the velocity potential and velocity
potential gradient at the cut are required for the numerical solution of the problem. The lift coefficient
can be finally computed from the circulation of the numerical solution. In the present work, the lift of an
airfoil is computed from finite element solutions using different approximation spaces: The conventional
H1(Ω) potential-field space and a special class of H(div; Ω) velocity-field space, i.e., the divergence-free
space. To ensure accuracy, an a posteriori error estimator for the problem is derived, which is based on
the difference in the velocity solution obtained using H1(Ω) and H(div; Ω) spaces. The convergence of
the error estimator, and by consequence, the convergence of the lift coefficient is verified by means of
uniform h-refinement strategies.

Keywords: Lift of airfoils, Finite element solutions, H(div; Ω) approximation spaces, A posteriori error
estimator

1 Introduction

The problem of flow around airfoils has been subject of experimental and numerical research for
a long time. The solution of the problem allows the computation of the lift generated by the airfoil,
which is crucial in aircraft design. Depending on the Reynolds number, the incompressible Navier-Stokes
equations can be simplified and, for suitable boundary conditions, the problem can be studied as a weakly
irrotational flow model. Regardless of the flow governing equations, finite element methods are widely
employed for the approximation of the problem [1]. In the context of weakly irrotational flow models,
the most common finite element approach is to obtain a weak formulation in terms of velocity potential
and use H1(Ω) finite element approximation spaces to solve for the potential. However, this approach do
not ensure local mass conservation. The appropriate selection of H(div; Ω)-L2(Ω) spaces for the velocity
and pressure fields has been demonstrated to ensure local mass conservation of the approximation [2].
The divergence-free space is a H(div; Ω)-type space which results null divergence and, therefore, can
be employed to obtain more accurate solutions in incompressive flow problems [3]. The divergence-free
space, denoted H(div; Ω)-Kernel or H(divk; Ω) space, has a reduced number of shape functions when
compared to H(div; Ω)-Standard space [3]. In the flow around an airfoil problem, the accuracy of the

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Maceió, Alagoas, November 11-14, 2024



Airfoil lift finite element computations using H1(Ω) and H(div; Ω) approximation spaces

numerical approximation is affected by the local singularity that arise at the trailing edge. The challenge
is to identify these regions and refine the elements such that the accuracy is optimal as a function of the
number of degrees of freedom. A posteriori error estimators extract a computable quantity as a function
of the numerical approximation and they can be used as a guide in adaptive procedures [4]. Extensive
research has been done in the context of a posteriori error estimators [5–7]. The main objective of the
present work is to accurately compute numerical flow solutions around airfoils to ensure accurate lift
computations. To ensure accuracy, an a posteriori error estimator for the the weakly irrotational flow
around an airfoil problem is derived based on H1(Ω) velocity potential and H(divk; Ω) velocity finite
element solutions. The study was conducted with the finite element library NeoPZ [8, 9].

2 Problem statement

The accurate solution of the flow around an airfoil problem allows the computation of the circulation,
which leads to the computation of the lift force generated by the airfoil. According to classical fluid
mechanics literature [1], the problem of flow around an airfoil can be studied using the governing equations
of weakly irrotational flows.

2.1 Governing equations of irrotational flows

If the density ρ is constant, the viscosity and thermal diffusion are negligible, and the flow does not
depend on time, then the Navier-Stokes equations simplifies and the velocity u(x) and pressure p(x) are
given for all points x ∈ Ω of the fluid by

∇ · u = 0, u · ∇u+∇p = f , (1)

in which f are the domain forces. For suitable boundary conditions, there exist solutions of equations (1)
satisfying ∇ × u = 0. These solutions are called irrotational [1]. For f = 0, we say that (1) have such
irrotational solutions if the velocity u(x) is given for all points x ∈ Ω of the fluid by

∇ · u = 0, ∇× u = 0, (2)

and the pressure can be post-processed from the incompressible Bernoulli’s equation as p = k− 1
2ρu ·u, in

which k is a constant that can be computed from undisturbed flow conditions. The governing equations
can also be presented in terms of a velocity potential φ(x), defined as u = ∇φ. Thus, both governing
equations in (2) are simultaneous satisfied by

∆φ = 0, u = ∇φ (3)

where ∆ () = ∇ · ∇ () is the Laplace operator.

2.2 Flow around an airfoil profile

The flow around an airfoil profile Γ0 corresponds, in principle, to flow in an unbounded exterior
domain, but we approximate infinity numerically by a boundary Γ∞ at a finite distance; so Ω is a two
dimensional domain with boundary Γ = Γ0 ∪ Γ∞, such as the one illustrated in Figure 1 (disregarding
the line Σ for now).

One often takes u∞ constant and the normal velocity boundary conditions g = u · n reads

g|Γ∞
= u∞ · n, g|Γ0

= 0. (4)

Unfortunately, the numerical results show that with these boundary conditions, the flow generally goes
around the trailing edge P . As P is a singular point of Γ, |u(x)| tends to infinity when x → P and the
viscosity effects (η and ζ) are no longer negligible in the neighborhood of P (see Fig. 1). The modeling
of the flow as an incompressible, inviscid and irrotational flow by (2) is not valid. The irrotational flow
condition has to be replaced by ∇ × u = cδΣ, where c is a constant and δΣ is the Dirac function on
an arbitrary line Σ which connects the trailing edge P with the external boundary Γ∞ (see [1]). The
problem can thus be stated as: Consider the doubly-connected domain Ω ⊂ R2, illustrated in Fig. 1,
with boundary Γ := ∂Ω, and a vector field u : Ω̄ → R2 satisfying the div-curl problem

∇ · u = 0, ∇× u = cδΣ. (5)
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Figure 1. Flow around an airfoil profile [10].

Once obtained the solution u, the circulation κ can be computed as∫
Γ0

utdΓ = κ, (6)

in which ut = u0 · t is the tangential velocity on the profile. The lift coefficient Cℓ of the airfoil can be
computed from the circulation as: Cℓ = κρ |u∞|.

3 H1(Ω) and H(divk; Ω) approximation spaces

For problems defined in R2, a finite element shape function ϕ(x, y) ∈ H1(Ω) is firstly converted into
an H(curl; Ω) function by multiplying it by the orthonormal basis component ez: ϕ(x, y)ez ∈ H(curl; Ω).
Then, a divergence-free finite element shape function Φ(x, y) ∈ H(divk; Ω) can be defined as

Φ(x, y) = ∇× (ϕez) = −∂ϕ

∂y
ex +

∂ϕ

∂x
ey, (7)

with the property

∇ ·Φ ≡ 0 =⇒ Φ ∈ H(divk; Ω). (8)

More details details on the velocity discretization at the element level with H(divk; Ω) approximation
spaces can be found in [3].

4 Solution strategies by variational methods

The defined problem can be approximated by finite elements either in terms of velocity potential φ,
using H1(Ω) approximation spaces into a variational weak formulation, or in terms of velocity u, using
H(divk; Ω) approximation spaces into another variational weak formulation.

4.1 Solution for the velocity potential field φ: H1(Ω) variational approach

To avoid the ill-posed div-curl problem (5) defined over the doubly-connected domain (see [1, 11]),
a cut Σ in the original domain (see Fig. 1), and additional constraints for the velocity potential and
velocity potential gradient at the cut, are required. The cut Σ includes two separate lines Σ+ and Σ−

joining the upper and lower surfaces (respectively) of the airfoil boundary Γ0 with the far field boundary
Γ∞. Therefore, a new, simply-connected domain of computation is defined: Ω−Σ. It is necessary to add
a boundary condition on Σ+ and Σ−. Since u must be continuous along Σ, we have:

∂φ

∂n

∣∣∣∣
Σ+

=
∂φ

∂n

∣∣∣∣
Σ−

,
∂φ

∂t

∣∣∣∣
Σ+

=
∂φ

∂t

∣∣∣∣
Σ−

. (9)

Integrating one of these equations over Σ one obtains: ∂
∂t (φ|Σ+ − φ|Σ−) = 0 or ∂

∂n (φ|Σ+ − φ|Σ−) = 0.
For some constant β, one obtains from the previous result: φ|Σ+ − φ|Σ− = β, where β is a constant to

be determined by imposing the flux continuity at the trailing edge: |∇φ (P+)|2 = |∇φ (P−)|2, in which
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P+ and P− are the trailing edge points on Σ+ and Σ−, respectively. It can be proven using conformal
mappings that the solution φ does not depend on the position of Σ [1], even though the numerical result is
influenced by it. Choosing an arbitrary path Σ, the solution for the velocity potential φ can be obtained
by solving: find φ ∈ H1(Ω) such that

∆φ = 0 on Ω− Σ,
∂φ

∂n

∣∣∣∣
∂Ω

= g on Ω− Σ, (10)

with the conditions

φ|Σ+ − φ|Σ− = β,
∣∣∇φ

(
P+

)∣∣2 =
∣∣∇φ

(
P−)∣∣2 (11)

on the new boundaries [1]. To solve (10)-(11), a simple method is to note that the solution is linear in β:

φ(x) = φ0(x) + βφ1(x), (12)

where φ0 is the solution of (10), with g defined in (4), and the first condition in (11) with β = 0:

∆φ0 = 0,
∂φ

∂n

∣∣∣∣
Γ

= g, φ continuous across Σ, (13)

and φ1 is the solution of (10), with g = 0, and the first condition in (11) with β = 1:

∆φ1 = 0,
∂φ1

∂n

∣∣∣∣
Γ

= 0, φ1
∣∣
Σ+ − φ1

∣∣
Σ− = 1, ∇φ1

∣∣
Σ+ = ∇φ1

∣∣
Σ− . (14)

The variational H1(Ω) weak form of the first and second problems can be stated as: find φ0 ∈ W0 such
that ∫

Ω

∇φ0 · ∇wdΩ =

∫
∂Ω

gdΓ ∀w ∈ H1(Ω), (15)

with W0 =
{
φ0 ∈ H1(Ω) : φ0

∣∣
Σ+ − φ0

∣∣
Σ− = 0, ∇φ0

∣∣
Σ+ = ∇φ0

∣∣
Σ−

}
, and find φ1 ∈ W1 such that∫

Ω

∇φ1 · ∇w = 0 ∀w ∈ H1(Ω), (16)

with W1 =
{
φ1 ∈ H1(Ω) : φ1

∣∣
Σ+ − φ1

∣∣
Σ− = 1, ∇φ1

∣∣
Σ+ = ∇φ1

∣∣
Σ−

}
.

The discretization of the computational domain into finite elements with piecewise H1(Ω) approxi-
mations for φ0, φ1 and w allows to obtain numerical solutions for φ0 and φ1. Finally, with these solutions
is possible to find β by solving the second condition in (11) with (12): it is an equation in one variable
β. In this approach, it is possible to show (see [1]) that β corresponds to the circulation and, therefore,
the lift coefficient Cℓ is proportional to β: Cℓ = βρ |u∞|, where ρ is the density of the fluid.

4.2 Solution for the velocity field u: H(divk; Ω) variational approach

To solve the problem with the H(divk; Ω) variational formulation, another approach to avoid the
ill-posed div-curl problem is adopted. For the problem double-connected domain, illustrated in Fig. 1,
the problem becomes well-posed with a unique solution, derived from potentials, when a certain line
integral is further prescribed [10]. In aerodynamics this is known as ”circulation condition”: we need to
prescribe the circulation along a closed curve that encloses the airfoil. One possible choice is to prescribe
the line integral around the boundary of the airfoil defined in (6), for some constant κ. The solution for
the velocity field u, satisfying ∇ · u = 0 and u = ∇φ, can be obtained by solving the weighted integral
form: find u ∈ W div such that ∫

Ω

∇ · uwdΩ = 0, ∀w ∈ L2(Ω) (17)∫
Ω

u ·wdΩ−
∫
Ω

∇φ ·wdΩ = 0, ∀w ∈ H(divk; Ω) (18)

with W div =
{
u ∈ H(divk; Ω) : u · n = un|Γ = g,

∫
Γ0

utdΓ = κ
}
. Since u ∈ H(divk; Ω), equation (17)

is automatically satisfied. Integration by parts of the second integral in equation (18) allows to rewrite
the problem as: find u ∈ W div such that
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∫
Ω

u ·wdΩ−
∫
Ω

∇ ·wφdΩ+

∫
∂Ω

φwndΓ = 0, ∀w ∈ H(divk; Ω) (19)

in which wn = w ·n. Knowing that w ∈ H(divk; Ω) and that, for the flow around an airfoil problem with
normal velocity un prescribed in the whole boundary ∂Ω, the problem reduces to: find u ∈ W div such
that ∫

Ω

u ·wdΩ = 0, ∀w ∈ H(divk; Ω). (20)

The velocity potential decomposition presented in (12), which came from the Helmholtz decomposition
of vector fields, can also be presented in terms of velocity as:

u(x) = u0(x) + βu1(x). (21)

The variational H(divk; Ω) weak form of the problems to find u0 and u1 can be stated as: find u0 ∈ W div
0

such that ∫
Ω

u0 ·wdΩ = 0, ∀w ∈ H(divk; Ω) : w · n = wn|Γ = 0, (22)

with W div
0 =

{
u0 ∈ H(divk; Ω) : u

0 · n = u0
n

∣∣
Γ
= g,

∫
Γ0

u0
tdΓ = 0

}
and find u1 ∈ W div

1 such that∫
Ω

u1 ·wdΩ = 0, ∀w ∈ H(divk; Ω) : w · n = wn|Γ = 0, (23)

with W div
1 =

{
u1 ∈ H(divk; Ω) : u

1 · n = u1
n

∣∣
Γ
= 0,

∫
Γ0

u1
tdΓ = 1

}
.

The discretization of the computational domain into finite elements with piecewise H(divk; Ω) ap-
proximations for u0, u1 and w allows to obtain numerical solutions for u0 and u1. Finally, with these
solutions is possible to find β by ensuring the continuity of the solution u, given by (11), at the trailing
edge. However, β does not have the physical meaning of circulation anymore.

5 Prager–Synge theorem

The Prager–Synge theorem is the basis of the proposed error estimator [5, 7]. The theorem states:
Let φ ∈ H1(Ω) be the solution of the variational problem, like those presented in (15)-(16), and let
φh ∈ H1(Ω) and uh ∈ H(div,Ω) with ∇·uh = f , be arbitrary (f is not defined and zero in our problem).
Then

∥∇ (φ− φh)∥2 + ∥∇φ+ uh∥2 = ∥∇φh + uh∥2 . (24)

The proof can be demonstrated by adding and subtracting ∇φ, resulting

∥∇φh + uh∥2 = ∥∇ (φh − φ) +∇φ+ uh∥2

= ∥∇ (φh − φ)∥2 + ∥∇φ+ uh∥2 + 2 (∇ (φh − φ) ,∇φ+ uh) (25)

Note (from u = −∇φ and ∇ · u = 0) that ∇φ ∈ H(div,Ω) with ∇ · (∇φ) = 0. Thus (∇φ+ uh) ∈
H(div,Ω) and in particular ∇ · (∇φ+ uh) = 0. Thus, using that φh − φ ∈ H1(Ω), the Green theorem
holds

(∇ (φh − φ) ,∇φ+ uh) = − (∇ · (∇φ+ uh) , φh − φ) = 0. (26)

Hence, under the assumptions of the theorem, it follows from (24) that

∥∇ (φ− φh)∥ ≤ ∥∇φh + uh∥ . (27)

This is an estimate for the error ∥∇ (φ− φh)∥ and has been brought to our attention for a posteriori
analysis by Vohralik in [6].
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6 Error Estimator

Knowing the global finite element solutions φh ∈ H1(Ω) and uh ∈ H(divk,Ω) ∈ H(div,Ω), an
elemental a posteriori error estimator ∥e∥u(Ωe) can be defined as:

∥e∥u(Ωe) =

∫
Ωe

∥∇φh + uh∥ dΩe. (28)

The a posteriori error estimator ∥e∥u(Ωe) can be employed to decide whether the numerical solutions φh

and uh are accurate enough, or even to guide hp-adaptive refinements.

7 Results

In this section, the error estimator convergence and the accuracy of the lift computation is analyzed
for an incompressible inviscid flow around an NACA 0012 airfoil problem. The analytic equation describ-
ing the NACA 0012 airfoil is given in [12]. The flow density is considered to be unitary, i.e. ρ = 1.0 kg/m3,
and the velocity at infinity is set as u∞ = (1.0, 0.5)m/s.

7.1 Error estimator convergence

The initial mesh adopted for the convergence study is composed of 72 quadrilateral elements of
polynomial order p = 2 for the velocity potential in the case of H1(Ω) analysis, and p = 1 for the velocity
in the case of H(divk; Ω) analysis. Blended elements are employed to maintain the exact geometry of
the NACA profile. The a posteriori error estimator ∥e∥u(Ωe) is then computed for uniform h-refinement
levels: h=1,2,3,4 and 6. The refinement level h=6 resulted in very accurateH1(Ω) andH(divk; Ω) velocity
solutions. Figure 2 illustrates the error results for the refinement levels h=2 and h=4, while Figure 3
illustrates the convergence of a global error, defined as the sun of the elemental errors.

Figure 2. Error estimator results for h-refinement analysis.
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Figure 3. Global error convergence

7.2 Accurate lift computations

Table 1 presents the lift coefficient results for the refinement levels h = 0, 2, 4 and 6, as well as the
respective generated Number of Equations (NE) and relative error between the H1(Ω) and the H(divk; Ω)
Cℓ solutions. It is worth mentioning that static condensation can be applied to eliminate the equations
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related to the internal shape functions of the H(divk; Ω) approximations. The rates of convergence of the
lift coefficient Cℓ resulted q ≈ 1.06 for the H1(Ω) solutions and q ≈ 1.02 for the H(divk; Ω) solutions.
Even thought the problems solution is singular at the trailing edge, the convergence rates of the lift
coefficient were not sub-optimal.

Table 1. Lift coefficient results obtained from the H1(Ω) and H(div; Ω) velocity solutions

h-refinement NE Cℓ H1(Ω) Cℓ H(divk; Ω) relative error (%)

h=0 325 6.65 5.43 18.34

h=2 4753 18.40 18.09 1.66

h=4 74305 22.21 22.11 0.44

h=6 1181953 23.19 23.16 0.12

8 Concluding Remarks

This work presented a new a posteriori error estimator applied to weakly irrotational flows around
airfoils and lift computations, which is based on the difference in the velocity solution obtained using
H1(Ω) and H(divk; Ω) spaces. The convergence of the error estimator, and by consequence, the con-
vergence of the lift coefficient is verified by means of uniform h-refinements. Further investigation may
include to apply the a posteriori error estimator to guide hp-adaptive refinement strategies in more
complex flow around airfoil problems.

Acknowledgements. The partial support provided by Conselho Nacional de Desenvolvimento Cient́ıfico
e Tecnológico, CNPq, under the Research Grant No. 315411/2023-6 is also gratefully acknowledged.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for
the authorship of this work, and that all material that has been herein included as part of the present
paper is either the property (and authorship) of the authors, or has the permission of the owners to be
included here.

References

[1] O. Pironneau. Finite Element Methods for Fluids. Dover, 1988.
[2] P. Carvalho. Hybridized finite element methods applied to hydro-mechanical problems. Unicamp, 2021.
[3] P. R. B. Devloo, J. W. D. Fernandes, S. M. Gomes, F. T. Orlandini, and N. Shauer. An efficient
construction of divergence-free spaces in the context of exact finite element de rham sequences. Computer
Methods in Applied Mechanics and Engineering, vol. 402, n. 1, pp. 115476, 2022.
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