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Abstract. The Ck-Generalized Finite Element Method (Ck-GFEM) in its original version considers Partition of
Unity (PoU) functions defined as Shepard ones, which delivers zeroth order consistency in the absence of uniform
polynomial extrinsic enrichment of degree one, at least. Such a feature can make Ck-GFEM unfavorable against
the conventional G/XFEM when comparing the degrees-of-freedom (dof) amount for a certain error level. This
inconvenience can be overcome through intrinsic enrichment using the Moving Least Squares Method (MLSM),
which allows the construction of PoU functions with enhanced polynomial reproducibility despite the cost of
demanding the widening of the associated supports. In this context, the present work summarizes some results
for the static rod deformation problem, for the linear elasticity, considering different classes of PoU functions
and different extrinsic enrichment functions, through an approach that adjusts the k-order of continuity and the
p-polynomial degree of the ansatz independently, for some kinds of loads distributions which leads to different
classes of solutions. It can be seen that such an improved version enables less dependence concerning the enriched
zone size, as already shown when using the original Ck-GFEM, while retaining the smaller cost in terms of dof as
the C0 counterpart.
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1 Introduction

The Ck-GFEM [1] was proposed as an alternative for generating approximations with high smoothness,
similar to some obtained by mesh-free methods while maintaining the implementation characteristics of G/XFEM.
The main difference with the original version of the method is the way the PoU functions are created. Considering
polygonal partitioning for a two-dimensional domain, conveniently smooth edge functions are defined from all
boundary segments of a nodal cloud, through which the corresponding nodal weighting functions are constructed.

The latter, therefore, inherits the minimum smoothness exhibited by the cloud edge functions. The PoU func-
tions are created in the sequence using the Shepard equation, which is nothing more than an MLS approximation
of degree zero. This point, mostly, is responsible for a highly relevant aspect that has made the Ck-GFEM not
as attractive as conventional GFEM, whose PoU functions are finite element shape functions, ensuring the linear
consistency of the approximation.

Although the Ck-GFEM can locally improve the approximation in the neighborhood of stress concentrations
represented through extrinsic enrichment [2, 3], and still be less sensitive to the size of the enriched zone, it can
demand more degrees of freedom for a given level of a global error1 compared to its counterpart [4–7]. It can also
be argued that the Ck-GFEM demands a higher numerical integration cost. However, it must be noted that this
integration cost may be associated not only with the PoU functions, but also with the enrichment functions. Addi-
tionally, in previous works, highly exhaustive integration quadratures have been preferred to guarantee negligible
integration errors2.

A rational smooth PoU function, as the Shepard one, will have a more oscillating derivative the smaller its
support is, whose extreme values are higher the higher its regularity is. In this context, a motivation to move back
towards one-dimensional problems is due to the performance comparison provided by [8] in which different strate-
gies designed to allow higher-order approximations, both in terms of smoothness and polynomial reproducibility,

1As the strain energy or energy norm, for example.
2Probably, for everyday applications, it would be possible to reduce this effort. Some findings in [5] point towards this direction. A more

detailed investigation into this needs to be carried out.
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were exploited in situations with high stress concentrations. Special enrichment functions were not used in the
case of extrinsically enriched approaches, and the discussion was concerned with the discretization parameters p
and h, although making the different smoothness evident. However, the most important issue to highlight is that
among the strategies analyzed, Ck-GFEM was the only with the maximum smoothness, k = ∞, which makes its
approximation subspace much more restricted than the other approaches.

It should be noted that the Ck-GFEM can provide approximations with different orders of smoothness simply
by changing the edge functions used in generating the weighting functions [4]. This smoothness adjustment process
can be done completely independent of the polynomial degree that is intended to be applied through extrinsic
enrichment, i.e., enabling completely decoupled p and k refinements.

Therefore, the present study seeks to overcome the deficiencies of the method and highlight its particularities.
The results will be discussed to emphasize the accuracy and convergence capabilities, in terms of strain energy,
and stability of the approximations, focusing mainly on the effects of enriched zone sizes when applying special
enrichment functions.

2 Model problem

A first application of the proposed strategy was presented by [9], in which static rod deformation problems
were solved considering only polynomial functions as extrinsic enrichment. Some advantages could be achieved in
terms of error levels and even improving convergence rates but consuming the same number of degrees of freedom
that the conventional C0-GFEM for a given polynomial degree approximation ansatz. However, it is still necessary
to assess its performance when using different extrinsic enrichment functions to represent stress concentrations.

The equilibrium equation in strong-form for the model problem considered herein is

d

dx

(
A(x)E(x)

d

dx
u(x)

)
+ b(x) = 0 , in Ω , (1)

where b(x) ∈ L(Ω,R1) is a distributed load, in [N/m], supposed in the space of Lebesgue square-integrable
functions on the domain Ω, a open subset in R1 with boundary ∂Ω. Thus, the solution u(x) ∈ H2(Ω,R1), the
Hilbert space of functions which with their derivatives up to second order are square-integrable, is the displacement
field, which has [m] unit. Herein, the stress concentrations will be caused by some special b(x) load distribution
functions.

The variables involved are defined as usual, following classical texts on the topic [10]. For the problems
solved herein, it is supposed constant cross-sectional area A, [m2], and Young’s module E, [N/m2], for simplicity,
and it is assumed homogeneous Dirichlet and/or Neumann boundary conditions without loss of generality. The
discretized weakened equilibrium problem is formulated in its irreducible version, using the linear constitutive
relation σ(x) = Eε(x), and the infinitesimal strain-displacement relationship ε(x) = d

dxu(x), being σ and ε the
stress and strain, respectively, measured in [N/m2] and [m/m]. In this context, the strain energy, [J], defined as

U
(
u(x)

)
=

1

2
B
(
u(x), u(x)

)
≡ 1

2

∫
Ω

EA

[
d

dx

(
u(x)

)]2
dx , (2)

with B(•, •) being the bi-linear form in the correspondent variational version, may be a metric for qualifying the
results.

3 Methodology

The procedure for constructing the weighting functions can be briefly described as: for each inner node in
the discretization it is necessary to build two boundary functions3, associated with the left and the right boundaries
of the corresponding cloud. For the boundary nodes, only the internal boundary function is needed. Such bound-
ary functions need to have as many zero derivatives at their corresponding cloud ends to ensure the smoothness
intended. For the conventional Ck-GFEM a cloud involves the two elements around its node whereas for the ap-
proach with enhanced consistency widened clouds are demanded. In this work, a widened nodal cloud considers
the two elements to either the left or right of a given node4, to guarantee the realization of the MLS with degree
one.

For the smooth approximations herein, a uniform k-refinement5 is obtained by considering boundary func-
tions with different continuities, such that k = 1, 2, 3 can be achieved using polynomial boundary functions with

3The boundary functions herein are analogous to the cloud edge functions in [1, 7].
4For internal nodes adjacent to those on the boundary, a ghost element outside the domain is created.
5Different orders of smoothness may be produced simply by choosing different boundary functions along the domain.
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polynomial degree p = 2, 3, 4, respectively [4]. On the other hand, the maximum continuity, k = ∞, is obtained
applying exponential boundary functions [1]. Consequently, the weighting functions inherit the continuity from
the boundary functions. Thus, the PoU functions are MLS functions, having degree zero (Shepard equation) for
the Ck-GFEM, and degree one for its version with enhanced consistency/reproducibility. Hereafter, this enhanced
version will be referred to as MLS-PoU-based approach.

Different approximation challenges were caused by conveniently choosing force distributions of interesting
classes. Firstly, it was considered a situation with a sixth-degree polynomial solution, caused by an excitation b1(x)
acting on a domain Ω = [0; 3.0 m], with both ends fixed. In the sequence, it was applied a load distribution b2(x)
which leads to a smooth solution with high derivatives around the position x0, whose intensity is governed by a
parameter α, according to [11]. In this case, a domain Ω = [0; 1.0 m], with both ends fixed, was considered. Finally,
a load distribution b3(x) leading to a solution whose derivative shows a singularity at the left end, following [12],
was considered. For this, Ω = [0; 1.0 m], with the left and right ends fixed and free, respectively. The expressions
for such loads are

b1(x) = (7/2)x4 − 10x3 + 2x2 + 5x+ 1 ,

b2(x) = 2α

[
1

1 + α2(x− x0)2
+

α2(x− x0)(1− x)[
1 + α2(x− x0)2

]2
]

, and

b3(x) = λ(λ− 1)xλ−2 ,

(3)

and the associated strain energies, measured in [J], for EA = 1.0 [N], considering x0 = 4/9 [m] and α = 50 as
well as λ = 0.65 for the last two cases, respectively, are the following

U(u1) = 6.156 818 181 818 181 , U(u2) = 12.134 685 458 546 76 , and U(u3) = 0.265 416 666 666 667 (4)

where the explicit dependence on x of the displacement fields was omitted to simplify the notation.
A set of four uniform nested meshes, with 5, 10, 20, and 40 elements, denoted as M5, M10, M20 and M40,

respectively, was chosen to guarantee the inclusion property6 in case of essentially polynomial sub-spaces.
Only uniform polynomial extrinsic enrichment was applied for the case with a polynomial solution. Differ-

ently, special extrinsic enrichments were locally applied, besides the polynomial one, for problems whose solutions
exhibit high derivatives. The exact solutions themselves, u2(x) and u3(x), respectively, were used as enrichments,
being applied to a set of nodes via different schemes, aiming to observe the influence of the enriched zone size,
similarly as previously done for Ck-GFEM [2, 3, 7].

For the case with b2(x), the special enrichment was initially applied to the nodes just around the position
x0, the red nodes in Fig. 1. The collection of nodes was progressively increased, including those right next to the
previously enriched ones, i.e., the blue nodes at a second step, the green ones at a third step, and so on. On the
other hand, for the case with b3(x), the special enrichment was also applied to a progressively growing collection
of nodes. For each mesh, the final dimension of the enriched zone was defined so that it allows, later, to obtain
h-convergence behavior under the condition of the well-known geometric pattern7 of enrichment, see Fig. 2.

Figure 1. Localized enrichment scheme, with a progressively increasing enriched zone, for the mesh M20.

Figure 2. Localized enrichment scheme, with a fixed size enriched zone, for the meshes M20 and M40.

Except for the C0-GFEM when only polynomial enrichments are used, the needed amount of integration
points can not be estimated since the basis functions are not essentially polynomial. Thus, the numerical integration
quality for both elemental stiffness matrices and load vectors, Ke and Fe, respectively, was ensured by using

6If the associated functions subspace of a given mesh is contained in the associated functions subspace of the next one them the error
decreases from mesh to mesh monotonically as h → 0 [10].

7The so-called geometric pattern of enrichment requires that the size of the enriched zone remains fixed as the mesh is refined.
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progressively growing Gauss-Legendre quadrature rules, in each element, until a relative deviation reached a pre-
established tolerance. For this, the following metrics were used

∥Ke∥ =

√√√√√dofe∑
i=1

dofe∑
j=1

k2ij and ∥Fe∥ =

√√√√dofe∑
i=1

f2
i , (5)

where dofe is the number of dof for a given element. A relative deviation between the entities obtained with the
k − 1 and k-th quadratures was computed by

rel. dev. =

(
∥ • ∥k − ∥ • ∥k−1

)
∥ • ∥k−1

. (6)

The tolerance was specified as 10−11 for both Ke and Fe, for all methodologies, for the two first load
distributions. Differently, for the problem with singular stress field, 10−2 was considered for Fe, for all approaches,
whereas for Ke, it was necessary to adjust the tolerance to 10−9, for the C0- and Ck-GFEMs, and 5 × 10−9 for
the MLS-PoU-based GFEM. The MLS-PoU-based approximations can demand a less restrictive tolerance because
their computation involves rather more operations besides the solution of a point-wise system of equations, which
can cause oscillations8 of the norms in eq. (5).

All the systems of linear algebraic equations were solved via the well established Babuška iterative procedure
[13], using a perturbation ϵ = 10−10 and tol = 10−12, even if the methodology does not lead to a singular
constrained stiffness matrix.

In the sequence, the discussion is carried out to highlight the benefits of different smoothness orders on the
way the enrichments are performed, considering plots of relative error versus the number of dof. Such a relative
error for an approximation ũ(x) is defined as

rel. error (%) =

∣∣U(u)− U(ũ)
∣∣

U(u)
· 100% . (7)

Finally, the stability of the approximations is measured by the condition number associated with the con-
strained stiffness matrices for the problem involving singularity. To enable such a comparison between all the
approaches, it was considered a condition number computed as

cond. number =
λM

λm
(8)

where λM is the larger eigenvalue and λm is the smaller nonzero eigenvalue, since the C0-GFEM and the MLS-
PoU-based methodology suffer from linear dependence once polynomial enrichment is extrinsic applied through-
out the domain.

4 Results and discussion

Next, the comments are grouped for each of the chosen loads. It should be remarked that as the polynomial
degree spanned by the basis functions depends both on the degree of the PoU itself and on the extrinsically polyno-
mial enrichment applied, it has been customary in previous works [2, 3, 5–7] to consider b as the resulting degree
of an approximation. Thus, for the C0-GFEM as well as for the MLS-PoU-based approach, b = p + 1, with p
being the degree of the extrinsic enrichment. Then, for a given degree b, the Ck-GFEM requires more extrinsic
polynomial enrichment, generating more dof, consequently.

4.1 Sixth-degree polynomial solution

Figures 3(a) and (b) show the h-convergence for approximations with uniform degree b = 1 and b = 2,
respectively. The error level for all MLS-PoU-based solutions is lower than that for C0-GFEM. Notably, the order
of smoothness affects both the error level and its rate of decrease between two successive meshes. Such an effect
is more pronounced when b = 1, for the MLS-PoU-based solutions, and when b = 2 for the Ck-GFEM.

Yet, when b = 1, for the coarsest mesh, the error level for all Ck-GFEM solutions is slightly lower than the
C0-counterpart. When b = 2, C2,3-GFEM solutions exhibit errors quite similar to those from the MLS-PoU-based

8Of course, an adjustment of such a tolerance needs to be made before running the numerical experiments. For the cases reported herein,
such oscillations occurred as the relative deviation reached levels around (1 ∼ 5) × 10−9. Additionally, it should be remembered that such
computations also included the special enrichment functions.
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solutions, among which the smoothest case has the worst error levels. Finally, the asymptotic convergence appears
to have already been achieved when b = 2, whose convergence rates are close around the theoretical value.
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Figure 3. h-convergence for the polynomial solution. (a) Uniform degree b = 1. (b) Uniform degree b = 2.

4.2 Smooth (even analytic) solution with sign-changing second derivative in some small subdomain

For brevity, only the results for the mesh M20 are shown in the present text9. Figures 4 and 5 show the effects
associated with the special enriched zone size, in case of basis with polynomial degree b = 1 and 2, respectively.
In such figures, moving towards increasing abscissa values means larger zones with special enrichment.

In both situations, the error levels for the C0-GFEM are higher than all the other approximations. Notably,
for b = 1, the errors for the C0 solutions seem to reach saturation at a level ten times higher than the worst case
with MLS-PoUs.

Figure 4. Error behavior once enlarging the enriched zone, problem with b2(x), mesh M20, with b = 1.

Figure 5. Error behavior once enlarging the enriched zone, problem with b2(x), mesh M20, with b = 2.

For b = 1, the Ck-GFEM solutions exhibit less tendency towards saturation, little sensitivity with relation to
the smoothness, and a better ability to improve response as the enriched zone increases. When b = 2, all smooth
solutions with smoothness orders k = 2 or 3 show smaller errors, indicating the inadequacy of the maximum
continuity requirement.

9A more detailed explanation, considering the results for the remaining meshes, will be delivered at the presentation.
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4.3 Solution with singular derivative at the left boundary

Once again, only the results for the mesh M20 are shown. Figures 6 and 7 show the effects associated with
the special enriched zone size, in case of basis with polynomial degree b = 1 and 2, respectively.

Figure 6. Error behavior once enlarging the enriched zone, problem with b3(x), mesh M20, with b = 1.

Figure 7. Error behavior once enlarging the enriched zone, problem with b3(x), mesh M20, with b = 2.

Notably, the PoU’s continuity is very relevant when b = 1, because in both cases, with increased continuity,
smaller errors occur even with smaller enriched zones. In the case of MLS-based PoUs, a smoothness order k = 1
performs better at the minimum enrichment. For the lower polynomial degree basis, the C0-GFEM is susceptible
to the size of the enriched zone. For this class of problem, the saturation occurs even for b = 2, for all approaches,
and such saturation for Ck-GFEM occurs at a slightly higher level. The conventional GFEM, in the case of b = 2,
performs as well as the best MLS-based approximation as the enriched zone increases.

Figure 8. Condition number for the stiffness matrices, problem with b3(x), mesh M20, with b = 1.

Figure 9. Condition number for the stiffness matrices, problem with b3(x), mesh M20, with b = 2.
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Maceió, Alagoas, November 11-14, 2024



Diego Amadeu F. Torres

Additionally, the stability if of very concern in the context of extrinsically enriched solutions. For this, figures
8 and 9 show the stiffness matrices condition number when applying enrichments with singular derivatives.

Notably, the condition number for the Ck-GFEM starts at a higher level and, for b = 1, there is practically
no dependence on the smoothness order. However, the PoUs with enhanced consistency lead to conditioning
comparable to that exhibit by the conventional GFEM. More surprisingly, in the case of b = 2, there are smoothness
orders that virtually lead to the same conditioning of the C0-GFEM, or even smaller, as occurs for the minimum
enriched zone. It should be noted that such situations involve both special and polynomial enrichments.

5 Conclusions

A certain order of smoothness may be useful, actually, when applying enrichment functions to represent stress
concentrations. It may deliver less sensitivity regarding to the size of the enriched zone. The most appropriate k
parameter seems to depend on the specific characteristics of the enrichment function. When the smooth PoU
already has the consistency of first degree, it is possible to benefit from the smoothness while requiring the same
computational cost, in terms of dof, as the conventional C0-GFEM, and yet not causing an impact on conditioning
so intense as the Ck-GFEM in its original version.
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