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Abstract. This work presents a non-intrusive implementation of the Generalized Finite Element Method with
Global-Local enrichment (IGL-GFEMgl) for multi-domain analysis. In IGL-GFEMgl, the global problem is ini-
tially discretized using a coarse mesh, without considering localized phenomena. In this work, the solution of this
domain is obtained using the commercial software Abaqus. Following, mesoscales, as many as necessary, are de-
fined. The global-local enrichment of the GFEMgl determines the association of each mesoscale with its respective
local problem, if it exists. The coupling between mesoscales and the global problem is established through the
transfer of displacements and generalized forces, defining the non-intrusive strategy denominated Iterative Global-
Local (IGL). Numerical simulations using GFEM and GFEMgl are executed in the computational system INSANE
(INteractive Structural ANalysis Enviroment - www.insane.dees.ufmg.br). The combination of solvers, indicated
in the solution methodology, focuses on endorsing the application of academic algorithms as instruments with the
capacity to solve complex models utilizing commercial software. A numerical example is presented to demonstrate
the simulation’s performance and to investigate the influence of the main parameters related to the proposed strat-
egy. This work is part of a master’s research in development that proposes the expansion of the implementation of
the non-intrusive strategy in INSANE.
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1 Introduction

A wide range of solid mechanic problems involves complex physical phenomena, such as cracks and high
stress gradients. Typically, these phenomena manifest in well-defined regions, motivating refined investigation
only in these domain areas. Several computational methods have been developed to solve multiscale or domain
decomposition problems, such as the Iterative Global-Local - IGL [1].

An important characteristic of the IGL approach is the non-intrusive coupling, which allows commercial
software to use algorithms developed in research environments. This method provides the industry with advanced
formulations, such as the Generalized Finite Element Method - GFEM [2] and its Global-Local approach - GFEMgl

[3], in combination with a robust software widely used by project engineers.
In GFEM, FEM conventional shape functions are multiplied by enrichment functions, improving the model

representation. Added to this improvement, in GFEMgl, the problem solution is divided into three steps and
two scales, beginning with a coarse discretization of the entire domain. Subsequently, a local problem defined in a
region with singularities in the displacement gradients (such as cracks) is solved, starting from the imposition of the
results obtained as boundary conditions. This strategy is concluded with a reanalysis of the initial problem enriched
with the solution obtained in the local problem. In GFEMgl, the remeshing of the global domain is dismissed, due
to the introduction of the local numerical solution in the initial problem through enrichment functions.

Li et al. [4] present IGL-GFEMgl, combining the non-intrusive implementation (IGL) with GFEMgl for the
analysis of multiscale problems. This method differs from its predecessors, which the coupling strategy relied
on substructuring algorithms, static condensation of the global stiffness matrix and Schwarz algorithms [5]. In
Li et al. [4]’s approach the problem is divided into three scales. The entire problem domain is considered to
simulate its global behavior by the Abaqus software. On a local scale, the phenomenon of interest is analyzed by a
research software. An intermediate scale, called mesoscale, integrates the global and local scales of analysis. The
mesoscale interacts with the local scale through the GFEMgl approach, while the interaction with the global scale
is defined by the IGL strategy. In this work, the coupling (implemented in [6], [7]), considering Abaqus and the
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INSANE computational platform, is adapted and evaluated for analyzing multiple domains with the presence of
local phenomena. This represents the first step toward automating and parallelizing this simulation process using
IGL-GFEMgl for multiple analysis domains.

After this introduction, the formulation aspects of IGL-FEM and its variations are presented in Section 2.
Then, in Section 3, the numerical experiments are exposed. Finally, the main conclusions of this article are sum-
marized in Section 4.

2 Formulation Aspects

This section presents the main aspects of the IGL-FEM formulation and the simulation of singularities via
GFEM.

2.1 Iterative Global-Local Finite Element Method (IGL-FEM)

The IGL-FEM solution procedure is shown in Figure 1(a) and described in detail below:
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Figure 1. Schematic representation of the solution process via (a)IGL-FEM and (b)IGL-GFEMgl. The components
of the interface region, ΓI , between the local and complementary domains are highlighted in yellow.

1. Global analysis: solve the global model obtaining the initial solution u0
G;

(KGC +KGL) · u0
G = fG (1)

2. Local analysis: define and solve the local models to obtain the solution uk
L. In this step, the initial solution,

u0
G, is used as a boundary condition along the ΓI interface of each local model;

3. Calculation of residues: from the solutions ui
G and ui

L associated with the iteration i, calculate the reactions
and internal nodal forces on the perimeter ΓI for the global problem (ΩC) and the local problem (ΩL),
respectively. The residue vector, obtained from the difference between these forces, is used to update the
force vector of the global model;

fR = −(fΓI

L + fΓI

C ) = −[(KL · ui
L − fL) |ΓI

+

(KGC · uGC
i − fGC) |ΓI

] (2)

where fL and fGC are the force vectors associated with contour ΓI , referring to the local and global models,
respectively.
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4. Check if the convergence criterion was reached. Otherwise, the iterative process continues by updating the
global model (through the addition of the residue fR to the global model’s force vector via Equation (1));

5. i global-local iteration: return to step 1 to obtain a new solution ui
G for the global problem and repeat the

other steps described, with the goal to achieve convergence (compatibility of displacements and balance of
forces in ΓI ) and the final solution.

The final solution is the combination of the global and local solutions as follows: uGC (displacements from
the global solution, uG, corresponding to the nodes of the complementary domain ) valid in the domain ΩC and
uL (from the solution of the local problem) valid in the domain ΩL. At the interface between the domains, the
solution is coincident, as indicated in step 5 of the solution procedure.

2.2 IGL-GFEMgl

In the IGL-GFEMgl strategy proposed by Li et al. [4], the problem is divided into three scales:
• Global Scale: represents the entire domain without localized phenomena of interest, discretized with a

coarse mesh.
• Mesoscale: corresponds to specific subregions of the global scale, with the function of enabling non-

intrusive coupling between global and local scales, acting as transition models.
• Local Scale: corresponds to the regions where local phenomena and other features of the problem are

represented. It is discretized with a refined mesh.
As shown in Figure 1(b), the global scale is coupled through the IGL algorithm to the mesoscale, which

is enriched with the local scale solution via GFEMgl. This approach is denominated as a monolithic solution
procedure [8]. Li et al. [8] proposed a variant of the IGL-GFEMgl called staggered algorithm. The distinction in
this strategy lies in performing IGL [1] cycles between the global model and the mesoscale before the GFEMgl

solution, which occurs only after reaching a convergence criterion.
According to Duarte and Kim [3], the hierarchical property of global-local enrichment guarantees that the

FEM shape functions remain unchanged after the enrichment, enabling non-intrusive coupling between the global
and local problem (defined as mesoscale). The main limitation of this method is associated with non-convergence
behavior, since the IGL characteristics are inherited [6]. The creation of a third domain (the local) and the use of
global-local enrichment of GFEMgl are not essential to the solution process, arranging to directly couple the IGL
algorithm and the GFEM conventional formulation.

2.3 Simulation of singularities through GFEM

The adoption of the GFEM enrichment in problems involving singularities in the stress field is possible
through asymptotic functions (suitable for addressing variables whose gradients tend to infinity), to improve the
solution in the neighborhood of singular points [9]. The Equations (3) to (6) express these functions:

u(1)
x =

1

2G
rλ

(1)

[(κ−Q(1)(λ(1) + 1)) cosλ(1)θ − λ(1) cos(λ(1) − 2)θ] (3)

u(1)
y =

1

2G
rλ

(1)

[(κ+Q(1)(λ(1) + 1)) sinλ(1)θ + λ(1) sin(λ(1) − 2)θ] (4)

u(2)
x =

1

2G
rλ

(2)

[(κ−Q(2)(λ(2) + 1)) sinλ(2)θ − λ(2) sin(λ(2) − 2)θ] (5)

u(2)
y = − 1

2G
rλ

(2)

[(κ+Q(2)(λ(2) + 1)) cosλ(2)θ + λ(2) cos(λ(2) − 2)θ] (6)

where:
• G is the modulus of rigidity;
• κ = (3− 4ν) for the Plane Strain and (3−ν)

1+ν for the Plane Stress, with ν corresponding to Poisson’s ratio;
• λ(i), Q(i) are constants that depends on the opening angle of the contour at the singular point;
• r and θ are variables in polar coordinates with origin at the singular point.
In the kinematic simulation of cracks in Two-Dimensional Linear Elastic Fracture Mechanics problems, the

enrichment can include singularity functions and the Heaviside function - Equation (7) [10] (implemented in
INSANE by Fonseca [11]).

H(ξ) = 1 ∀ ξ > 0; H(ξ) = 0 ∀ ξ < 0 (7)
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where ξ represents the position in relation to the discontinuity starting at ξ = 0.

3 Numerical Experiments

3.1 Axially tensioned bar

Figure 2 illustrates the first problem studied in this work: an axially tensioned bar (P = 150) with the follow-
ing properties: cross-sectional area A = 0.5, Poisson’s ratio ν = 0.3, and Young’s modulus E = 200. Consistent
units are adopted. Through the application of the weights α and β to the modulus of elasticity, eight models are
simulated, each differing by stiffness loss in certain regions of the domain. Local domains are strategically defined
in these regions.

Models 1, 2 and 3 have only one local model, while the others models have two. This example was solved
using the IGL solution strategy (Section 2.1) to evaluate the impact of multiple local domains on the solution
process convergence. The values for α and β used for each analyzed model and the results obtained are presented
in Table 1.
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Figure 2. Analysis model and discretization used for the axially tensioned bar

The displacement error at the free end of the cantilever beam (∆6) was measured and compared with the
reference models. In all cases, the results were satisfactory. Accordingly to the data, the IGL strategy convergence
strongly depends on the stiffness variation between the analysis domains (global and local). Comparing the results
of models 1, 2 and 3 with models 4, 5 and 6, respectively, it is notable that adding a new local model with the same
stiffness penalization does not affect the number of iterations required for convergence.

From models 7 and 8, it is noticeable that the number of IGL iterations performed is defined by convergence
conditions of the local domain which implies in a greater stiffness penalization. In these analyses, the domain
whose weight is smaller converges faster, and its solution is not affected by the iterations required for the remaining
domain convergence. Therefore, the mutual influence between the different local models does not need to be a
concern. Any potential interferences can be addressed later in the global problem.

Table 1. α and β parameters and results for each model of problem 1. Models 1, 2 and 3 present only one local
problem (related to α).

Model 1 2 3 4 5 6 7 8

α 0.25 0.50 0.75 0.25 0.50 0.75 0.50 0.50

β - - - 0.25 0.50 0.75 0.75 0.25

IGL Iterations 44 17 8 44 17 8 16 42

Error - ∆6(%) 1.06E-04 1.27E-04 9.54E-05 3.09E-04 2.18E-04 1.80E-04 2.41E-04 1.89E-04

The error evolution can be evaluated by the ratio modulus between the norms of the residue and the reference
vectors. The reference vector is calculated using the end forces of the local domain from the first iteration. The
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results are presented in Figure 3.

Figure 3. Error associated with iterations

3.2 Plane Frame Model

The second numerical example, solved using IGL-GFEMgl, is presented in Figure 4 and corresponds to a
plane frame with a 2.1× 104 nodal load applied in the element symmetry axis. The elastic material properties are
Young’s modulus E = 2.0× 107 and Poisson’s ratio ν = 0.3. Consistent units are adopted.

The global scale and each mesoscale mesh consists of 1008 and 96 four-node quadrilateral elements (dimen-
sions of 5.0 x 5.0), respectively. Two mesoscales are evaluated. Mesoscale 1 includes a crack defined by the
parameters a = 7.9057 and β = 2.8198 represented kinematically in the local model, automatically generated
from the strategy implemented in INSANE by Fonseca [11]. Mesoscale 2 features eight nodes enriched with sin-
gularity functions - eqs. (3 -6) - to represent the displacement and stress fields in the neighborhood of the singular
point (corner of the frame).
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Figure 4. Analysis model and discretization used for the plane frame

The main results are summarized in Table 2: Stresses Intensity Factors - KI and KII - and Strain Energy - U.
The error evolution at each IGL iteration is shown in Figure 5. These data are compared with an equivalent numer-
ical model (global and local problems with equivalent discretizations) solved in INSANE environment by GFEMgl.
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Two approaches were evaluated: the monolithic and the staggered algorithm (Section 2.2), with convergent results.
Notably, for models with five global-local cycles per iteration, the staggered algorithm reduced computational time
by 9.94%, due to a lower total number of cycles: 20 versus 25 in the monolithic approach. However, as suggested
by Li et al. [4], just one cycle is sufficient to address the effects of low-accurate boundary conditions applied to the
local model, emphasizing the monolithic procedure use.

Table 2. Results and respective errors for each model of problem 2

Models KI Error (%) KII Error (%) U Error (%) Time(s) IGL It. Stag. It.

Reference 726.88 - 5.21 - 73.08 - 248 - -

Monolithic (1GL) 707.71 2.64 4.99 4.27 72.85 0.31 361 6 -

Monolithic (5GL) 707.73 2.63 4.99 4.22 72.86 0.31 1046 6 -

Staggered (1GL) 707.67 2.64 4.98 4.37 72.85 0.31 587 11 4

Staggered (5GL) 707.67 2.64 4.98 4.38 72.85 0.31 942 11 4

To extend the conclusions of Section 3.1, regarding the unidimensional bar, to plane models, it was stud-
ied a frame that contains only mesoscale 1 (intermediate domain of greater complexity of this problem), with 9
IGL iterations and 3 staggered cycles and 6 IGL iterations in the monolithic approach. Comparing these results
with those in Table 2, the conclusions observed in Section 3.1 are verified, i.e., the number of iterations required
for convergence when added more local domains (here called mesoscales), with less difference in stiffness, is
maintained.

Before the first global-local cycle and consideration of the crack (IGL iteration 2 = staggered 1 - Figure 5), an
increase of 2 IGL iterations in the staggered approach was observed. This does not represent mutual interference
between mesoscales, these additional iterations are required due to the imbalance caused by the enrichment of the
GFEM in mesoscale 2, included from the initial stage.

Figure 5. IGL iterations and error evolution. Note that the SIFs are calculated only after the first GFEMgl cycle.
This is performed after the iteration 0 for the monolithic strategy and after the iteration 2 for the staggered strategy.

Table 3 shows the reference solutions stress state at the frame corner node and the solutions obtained from
the monolithic and staggered procedures. These data were extrapolated from the values calculated at the Gauss
integration points of the elements sharing this node. This was necessary because the frame corner point is where
the stress field is singular. Therefore, these results are used here for comparison only. An error of 0.31% was
observed regarding strain energy for both iterative coupling procedures.

4 Conclusions

This study focuses on the application of the IGL coupling method combined with GFEM and GFEMgl in
models with multiple domains, each one represented by a respective mesoscale. The results obtained were satis-
factory, with displacement approximation errors in the bar model on the order of 10−4 and between 0.12% and
4.38% for the parameters related to the plane model.
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Table 3. Stress state of the node located at the corner of the frame - Mesoscale 2

Models σxx Error (%) σyy Error (%) τxy Error (%)

Reference 808.22 - 866.97 - -355.90 -

Monolithic (1GL) 809.38 0.14 868.01 0.12 -356.36 0.13

Staggered (1GL) 809.36 0.14 867.99 0.12 -356.35 0.13

The IGL strategy was robust to solve problems with multiple local domains, as the iterative convergence
process was unaffected. This capability contributes to the broader application of the method in large structures,
which often involve numerous local phenomena requiring detailed and appropriately refined models.

Another characteristic of IGL verified in the examples is the capability to analyze structures with different
levels of mesh refinement, avoiding to adopt a single model that considers the effects of scales with significantly
different magnitudes, which could lead to high computational costs or inadequate representation of localized phe-
nomena.

This is the first part of a work that aims to automate the coupling procedure between the Abaqus and IN-
SANE solvers. The next step will involve parallelizing the multiple mesoscale solutions instead of the sequential
procedure.
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