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Abstract. Renewable solar energy is an excellent alternative to conventional energy sources and has
recently shown remarkable growth in electrical power grids worldwide. Maximum power point tracking
(MPPT) is critical in solar energy generation as it enhances system efficiency. Photovoltaic (PV) modules
are affected by environmental factors like temperature and solar irradiation, altering the energy gener-
ated throughout the day. To extract maximum power from a PV, MPPT techniques consider system
nonlinearities. MPP is achieved by adjusting the duty cycle of the DC-DC converter to align the PV’s
terminal voltage with environmental conditions, typically relying on voltage and current sensors due to
their low cost and ease of acquisition. However, intelligent techniques often require additional tempera-
ture and irradiation sensors, increasing system complexity. Recent publications highlight the significant
efficiency gains from intelligent control techniques in energy generation. This study aims to develop and
simulate a battery charging system using solar energy in MATLAB/SIMULINK, comprising a PV, a
Buck converter, a 12V battery, and an MPPT controller. The study compares the intelligent fuzzy logic
MPPT technique (Fuzzy MPPT) and the classical incremental conductance technique (IC MPPT), both
utilizing only voltage and current measurements.

Keywords: Maximum Power Point Tracking; Solar Battery Charger; Fuzzy System;

1 Introduction

As awareness of sustainability and mitigating climate change grows, renewable energy sources are
being sought after as a vital tool for cutting greenhouse gas emissions. In this context, solar energy is
a popular alternative clean energy source that can be utilized for industrial, commercial, and residential
applications. Utilizing photovoltaic panel-related technologies, such as battery storage, which enables
the continuing use of the energy captured even at night or on cloudy days, can improve the system’s
efficiency. Inverters, DC-DC converters, and sophisticated monitoring systems are examples of emerging
electronic technologies that significantly improve efficiency.

The photovoltaic panel (PV) develops a nonlinear behavior that depends on the environmental fac-
tors of temperature and irradiation. These parameters modify the power profiles available for extraction
from the PV, changing the operating points corresponding to their maximum value (MPP). In this sense,
various Maximum Power Point Tracking (MPPT) techniques have been developed and widely used in this
context. Algorithms such as hill climb (HC), perturb and observe (P&O), and incremental conductance
(IC) are some of the classic methods used in photovoltaic systems [1].

Despite their easy implementation and low complexity, they are often singled out for having a
characteristically slow response time to sudden changes in weather conditions or more complex operating
conditions such as the partial shading condition (PSC). Therefore, Intelligent MPPT techniques have
been developed to obtain a more robust, efficient and flexible system. Among them, fuzzy inference
systems (FIS) have had a notable presence in the literature over the last few decades as an easy-to-tune
system, since it does not require analytical knowledge of the systems, and are reliable for dealing with
nonlinearities [2]. The use of the fuzzy MPPT technique has a significant presence, particulary when
applied to photovoltaic power generation systems, where various studies have explored its flexibility and
characteristics in this area [3–7].
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In [8] they use, in addition to the traditional P-V curve of the panel, the I-V curve, where the
derivatives of each curve are used as input variables for the fuzzy inference system (FIS).In [9], which
uses power and voltage variations and a beta factor (related to voltage and current values) as inputs,
exploring alternatives for the number and type of fuzzy input variables. Moreover in [10], which explores
how the various existing pertinence functions (Trapezoidal, triangular, Gaussian, etc.) impact on the
tracking process.

In this regard, this paper contributes as follows:
• Analysis of the nonlinear PV model;
• Static design of the Buck converter operating as a solar battery charger;
• Design of the fuzzy MPPT considering the variable duty-cycle increment;
• Detailed description of the performance parameters;
• Simulation and comparative analysis of the results considering the fuzzy MPPT and IC MPPT

techniques focused on the difference between variable increment versus fixed increment.
In terms of structure, this paper is as follows: section 2 describes the characteristics of the PV and its

equivalent circuit that models the nonlinear behavior. In section 3 is provided the Buck converter design
requirements, considering its operation as a solar battery charger and the definition of the components.
Section 4 provides a brief description of the classic MPPT IC technique. In section 5, the detailed
implementation of the proposed fuzzy MPPT is described. The simulation results of the proposed MPPTs
under various environmental conditions is shown in section 6. The last section includes the concluding
remarks.

2 PV Modeling

PV cells have a nonlinear behavior represented by the I-V and P-V characteristic curves. Addition-
ally, [11] proposes an equivalent circuit that represents the nonlinear behavior of PV cells, as shown in
Fig. 1. Rs is the cell’s series resistance, Rp is the cell’s parallel resistance, and Dpv characterizes the
semiconductor junction of the material from which the cells are made, typically silicon. iph represents
the photocurrent induced in the cells, described by eq. (1), and it is a function of the cell’s temperature
(temp) and solar irradiation (psun).

iph(psun, temp) = [ISC + α · (temp− Tr)] ·
psun
1000

(1)

ISC is the cell’s short-circuit current, α is Isc’s temperature coefficient, and Tr is the reference
temperature (25 ◦C = 298 K). The eq. (2) is an expression that approximates the characteristic behavior
of the PV current and described as a function of 3 variables: solar irradiance (psun), temperature (temp),
and PV cell voltage (vpv), which was obtained from expanding the exponential terms in the Taylor’s series
results in the standard operation point (1000 W/m2 and 298 K). Where k is the Boltzmann’s constant,
q is the elementary charge, n is the quality factor of the junction, and Irr = 7.154 pA is the reference
reverse saturation current.

ipv(psun, temp, vpv) =
iph(psun, temp)− Irr · (e

q·vpv
n·k·Tr − 1)− vpv

Rp

1 + Rs

Rp
+ Irr·q·Rs

n·k·temp · e
q·vpv
n·k·Tr

(2)

Therefore, given any operating condition, by controlling vpv, it is possible to find the corresponding
MPP, which is called MPPT. The PV parameters were specified according to 330W commercial modules.

3 Buck Converter Design

The Fig. 1 contains the equivalent circuit of the solar battery charger consisting of PV, Buck converter
and Battery. This system is controlled by the MPPT algorithm that uses the vpv and ipv signals to adjust
the duty-cycle (Dt) that controls the S switch from the PWM modulator, in order to deliver the maximum
available energy to the battery.

The component specifications are contained in Table 1, obtained according to equations 3, 5, 4 to
meet the design requirements of output current ripple (∆Io = 10 %), and input voltage ripple, and output
voltage ripple (∆Vin = ∆Vo = 1 %). Where fs is the converter’s switching frequency (150 kHz), Dmin is
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Figure 1. System Overview

the duty-clyce corresponding to the 50 V input voltage (Dmin = 12/50 = 0.24) and Dmax corresponding
to the 20 V input voltage (Dmax = 12/20 = 0.6).

L =
Vo(1−Dmin)

∆IL · fs
= 22.109 µH (3)

∆VCout
= (

1

8 · Cout · fs
+RCout

) ·∆Io (4)

∆VCin
= (

(1−Dmax) ·Dmax

Cin · fs
+RCin

) ·∆Io (5)

Table 1. Buck Parameters

Description Symbol Value
Inductor L 22.109 µ H

Internal Inductor Resistance RL 3 mΩ

Input Capacitor Cin 2.7 mF
Internal Resistance of Cin RCin

6.519 mΩ

Output Capacitor Cout 500 µF
Internal Resistance of Cout RCout

35.2 mΩ

Diode Forward Voltage VTO 1 V
MOSFET Conduction Resistance RON 6.5 mΩ

4 IC MPPT

To implement the MPPT IC, the input variables considered were vpv and ipv. Thus, the classic IC
algorithm was used, assuming that in MPP the eq. (6) is valid [1].

dP

dV
= 0,

dI

dV
= − I

V
(6)

Additionally, based on the voltage increment to be given, duty increment (∆D = 0.0001) is defined
as a constant value. According to the buck converter logic: a positive voltage increment results from a
negative duty increment, and a negative voltage increment results from a positive duty increment.
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5 Fuzzy MPPT

The following quantities were used as input variables to implement the fuzzy inference system as an
MPPT, the power derivative about the voltage, referred to as the error (E), eq. (7), and its variation
(∆E), eq. (8). The duty increment (∆D), eq. (9) was defined as the output variable, where t is the
simulation step.

Et =
dPpv(t)

dVpv(t)
(7)

∆Et = Et − Et−1 (8)

Dt = Dt−1 +∆Dt (9)

The derivative of the power indicates, by its magnitude and sign, the location of the instantaneous
point of the PMPP /VMPP pair, while its variation suggests the direction and intensity with which this
point moves [8]. The premises for tracking could be developed which were then used to build the con-
troller’s rule table. The main ones are defined as:

• IF The MPP is achieved when the error is zero:
– THEN The voltage must remain at the point, so ∆D = 0;

• IF E > 0 and ∆E < 0, the point is to the left and approaches the MPP:
– THEN The voltage approaches the value corresponding to the MPP (increases), so ∆D = 0;

• IF E > 0 and ∆E > 0, the point is on the left and moves away from the MPP:
– THEN The voltage moves away from the value corresponding to the MPP (decreases), so the

∆D < 0;
• IF E < 0 and ∆E < 0, the instantaneous point is on the right and moves away from the MPP:

– THEN The voltage moves away from the value corresponding to the MPP (increases), so
∆D > 0;

• IF E < 0 and ∆E > 0, the instantaneous point is on the right and approaches the MPP:
– THEN The voltage approaches the value corresponding to the MPP (decreases), so ∆D = 0.

When considering the relevance of pertinence functions, the following principle was applied to de-
termine them: when MPP is far, the increments must be large. As it approaches, the increments are
gradually reduced until they cancel out at the precise point. Thus, the pertinence functions and their
respective universes of discourse were defined: E, ∆E ϵ [−5,5] and ∆D ϵ [−0.001,0.001]. Where, the
pertinence functions of the inputs are similar, differing only for Z (∆E, dashed), according to Fig. 2(a),
and the pertinence function of the output, according to Fig. 2(b).

((a)) Inputs E and ∆E ((b)) Output ∆D

Figure 2. Membership functions

These define the possibility of fuzzy inference for a Duty jump up to 10 times greater than the fixed
step of the incremental conductance method. Additionally, for the same purpose, rules corresponding to
zero error were assigned a weight of 1, whereas other rules were assigned a weight of 0.3. It is important
to note that the adjust of these values was achieved experimentally, where the values were varied and
their influence on the system’s response was verified.
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6 Results

As a basis for comparing the two MPPT methodologies, three test scenarios were defined in which
the system is disturbed by abrupt variations in temperature and solar irradiance. The aim was to analyze
the Fuzzy and IC MPPT systems in two extreme scenarios to evaluate the robustness of the tracking
methods. In scenario 1, the PV irradiation was kept at 1000 W/m², and starting at 50°C, the temperature
was varied in 4 steps of -10°C. In scenario 2, the PV temperature was kept at 25°C, and the irradiation
was varied in 4 steps of -200 W/m², starting at 1000 W/m². As a standard, in each scenario, the steps
were implemented at time intervals of 0.5 seconds, which was suitable for tracking and signal stability.

Figure 3 contains the tracking results of the IC and Fuzzy MPPT methods. As can be seen, the
fuzzy MPPT’s tracking time is shorter than the IC’s. This is evidenced in the detail of step 1, where
it is possible to observe the moment where the moving averages meet the tracking criterion, remaining
within the limit of 0.1% of PMPP . This is because scenario 1 considers temperature variations, making
the voltage jumps corresponding to each step’s MPPs (VMPP ) larger. Therefore, in this scenario, the
fuzzy MPPT has an advantage over the IC due to its variable duty-cycle increment in power variation.

Additionally, regarding power ripple on MPP, a greater ripple amplitude is observed for the IC
MPPT method. This is also due to the fuzzy MPPT being able to decrease the duty-cycle increment
as it approaches the MPP progressively. Finally, efficiency can be seen in the difference between the
theoretical MPP reference signal (red) and the signals for each method, Fuzzy MPPT (blue) and IC
MPPT (green). So the efficiency was calculated and accounted for according to eq. (10) and in Table 2,
respectively. Where IAE is the Integral Absolute of Error, taking the whole scenario into account.

η% =
1

(1 + IAE)
· 100% (10)

Figure 3. Scenario 1 Fuzzy and IC MPPT response

Figure 4 contains the tracking results of the IC and Fuzzy MPPT methods. Scenario 2 considers
variations in solar irradiation, making the voltage jumps corresponding to the MPPs of each step smaller
than in scenario 1. However, the variations in irradiation have a more significant impact on the PMPP

values of each step. Therefore, in this scenario, the fuzzy and IC MPPTs perform closely regarding of
efficiency and tracking speed, as can be seen in the test overview.

In the detail of the first step, it can be seen that the IC MPPT has a shorter tracking time than the
Fuzzy MPPT, according to the criteria. However, the details of step 3 show the opposite. This is due to
the Fuzzy’s variable increment being dependent on power variation. In contrast, the fixed IC increment is
enough to quickly track the MPP since VMPP does not change much from one step to the next. Therefore,
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Figure 4. Scenario 2 Fuzzy and IC MPPT response

as the solar irradiation decreases, the variation in power also decreases, and the techniques are equally
efficient according to the criteria. However, the Fuzzy MPPT is faster for lower solar irradiations.

MPPT
Tracking Time (ms) ∆P (W)

η (%)Steps Steps

1 2 3 4 1 2 3 4

Scenario 1
fuzzy 14.3 13 17 18 1.423 1.484 1.545 1.62 92.23

IC 63.69 56 54 48 1.429 1.493 1.558 1.62 92.05

Scenario 2
fuzzy 4.6 2.43 0.04 4.7 0.9755 0.5507 0.2435 0.7872 93.61

IC 2.2 2.17 1.4 9.3 0.9923 0.5621 0.2509 0.5686 93.62

Table 2. Overall Results of the Performance Parameters

Fuzzy MPPT has a shorter tracking time than IC MPPT for abrupt temperature variations, while
for solar irradiance variations have equivalent tracking times. As mentioned above, in scenario 1, the
tracking time of the Fuzzy MPPT was lower in all steps, while in scenario 2, in steps 1 and 2, the IC
MPPT obtained a better result, while the Fuzzy MPPT obtained better results in the rest. In general,
the permanent power ripples of the fuzzy MPPT were slightly smaller than the IC MPPT due to the
variable increment. In scenario 2, the power fluctuations are less significant because the PMPP values are
lower, generating more minor power fluctuations in the permanent regime. Finally, the tracking efficiency
of Fuzzy MPPT is higher than IC MPPT in scenario 1 due to the variable increment and is equivalent
to IC MPPT in scenario 2. Therefore, Fuzzy MPPT can track the MPP more quickly in temperature
variations, where the value of VMPP varies more; it also performs equally well in scenarios where the
values of VMPP are closer, in the case of solar irradiance variation.

7 Conclusions

This work proposes an MPPT technique based on fuzzy logic with a variable duty-cycle increment,
compared to a classic IC MPPT technique with a fixed increment. Both techniques were applied to a solar
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battery charger system with a Buck converter, implemented by simulation in the MATLAB/SIMULINK
software environment.

It was found that the fuzzy MPPT technique performed better than the IC MPPT in supplying
energy to the batteries more efficiently under different operating conditions, based on performance pa-
rameters found in the literature, such as tracking time, efficiency and power ripple on MPP.

This was due to FIS’s ability, as opposed to the IC method’s fixed increment, to implement a variable
increment and, therefore, to reach the MPP more quickly in the scenarios that required more significant
variations in the voltage applied to the panel, impacting the tracking time. As MPP gets closer, it reduces
the increment to zero, impacting the efficiency and steady-state oscillation.

Future work will focus on applying bio-inspired optimization algorithms to tune the fuzzy MPPT,
considering tracking efficiency as a cost function.
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