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Abstract. This study presents a novel approach that integrates the Spalart-Allmaras turbulence model with the
Fourier pseudo-spectral method to simulate turbulent channel flow. The methodology is particularly suited for
capturing the nuances of turbulence within channel flows, offering a balance between computational efficiency
and accuracy. The proposed approach was validated against high-fidelity DNS data from Lee and Monser [1],
corresponding to a Reynolds number of Re = 40,000 or Reτ = 1,000. The results demonstrate a strong correlation
between the simulated outcomes and DNS data, particularly in accurately reproducing the mean velocity profiles
and viscous shear stress distributions. This validation underscores the effectiveness of the combined methodology
in turbulent flow simulations, suggesting its potential for broader applications in engineering and fluid dynamics
research.
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1 Introduction

Most practical applications of fluid mechanics involve turbulent flows, characterized by their instability and
fluctuations that depend on both time and spatial position. Turbulent flows near the Earth’s surface, where rough-
ness is exceptionally variable, are particularly important for predicting the potential and sizing of wind generators
and wind farms [2]. One of the key challenges in studying turbulent flows is the multiplicity of scales that charac-
terize them. The largest structures (low frequencies) are controlled by the geometry that generates them, while the
smallest structures (high frequencies) are governed by the fluid’s viscosity. The turbulent regime is predominant
because small perturbations are naturally amplified, leading to instabilities and transition [3].

The Navier-Stokes equations, coupled with the continuity equation, are fundamental in modeling both laminar
and turbulent flows. However, at high Reynolds numbers (Re), Direct Numerical Simulation (DNS) becomes
infeasible due to the substantial computational cost required to resolve the full energy spectrum, with the number of
degrees of freedom scaling as Re9/4 [4]. This results in an extremely large linear system that must be solved, which
is proportional to the degrees of freedom of the turbulent flow [5]. To address this, researchers have developed
various turbulence closure models that filter the balance equations, resulting in the emergence of new terms that
require modeling.

Among the methodologies developed to model and simulate turbulent flows, Unsteady Reynolds-Averaged
Navier-Stokes Equations (URANS) and Large Eddy Simulation (LES) are commonly used. LES resolves large
scales while modeling only the smaller scales, making it suitable for high-resolution simulations. URANS, the
focus of this study, employs a non-permanent filtered field to model turbulent flows, offering a balance between
computational cost and accuracy [3]. This makes URANS particularly useful for engineering applications where
fully resolved simulations like DNS are not feasible.

In addition to turbulence modeling, another significant challenge in computational fluid dynamics (CFD)
is the need for efficient computational tools, particularly when dealing with complex geometries in real-world
turbulent flows. The Immersed Boundary Method (IBM) offers an efficient solution by using body-unfitted grids,
simplifying mesh generation and allowing for it to be performed once at the start of a simulation [6]. IBM’s

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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ability to fully immerse solid boundaries within the computational grid enables more flexible handling of complex
geometries without the need for mesh refinement.

High-accuracy computer simulations can be achieved by solving fluid flow equations using high-order nu-
merical methods such as spectral methods, which are known for their exponential convergence rate with mesh re-
finement. The collocation Fourier pseudo-spectral method (FPSM) is particularly effective for solving the Navier-
Stokes equations, as it eliminates the need for solving the pressure gradient in incompressible flows by ensuring
mass conservation through the projection of the nonlinear term [7]. This method replaces the solution of the Pois-
son equation with a matrix-vector product, which is computationally faster and requires less RAM. The pressure
field can still be obtained during post-processing. The main computational cost of using FPSM lies in transforming
the velocity fields into spectral space. This is done using the fast Fourier transform (FFT) algorithm, which is often
more efficient than solving linear systems, particularly in simulations with a finer mesh refinement [7]. However,
the FPSM requires periodic boundary conditions, limiting its applicability in CFD to a few specific problems.

The integration of immersed boundary and Fourier pseudo-spectral methods forms the approach known as
IMERSPEC, as outlined in Mariano et al. [7] and Nascimento et al. [8]. This methodology aims to leverage
the strengths of both techniques while addressing certain limitations. To circumvent the necessity of periodic
boundary conditions when employing FFT, Mariano et al. [7] suggest partitioning the computational domain into
two sections using IBM. Within the physical domain, boundary conditions are enforced via IBM, while externally,
the complementary domain applies the periodic boundary conditions essential for FFT computations.

Building on this foundation, the present study extends the IMERSPEC methodology to simulate turbulent
flow using the Reynolds-averaged Navier-Stokes equations and the Spalart-Allmaras turbulence model [9]. By
validating the numerical results against DNS data for a flat channel flow at Re = 40,000, we aim to assess the
effectiveness and accuracy of this combined approach in capturing the key characteristics of turbulent flows. This
study contributes to the ongoing development of efficient and accurate CFD methods, with potential applications
in aerodynamic and fluid dynamic engineering studies.

2 Mathematical Modeling and Numerical Method

Turbulent isothermal flows of Newtonian fluids can be described using the continuity and Navier-Stokes
equations. When dealing with incompressible flows, these equations, subjected to the mean temporal operator, are
expressed as Eq. 1 and Eq. 2, utilizing indicial notation:
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= 0, (1)
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where p̄ is the mean pressure [N/m2]; ūi is the mean velocity in the i-direction [m/s]; f̄i is a source term [N/m3];
ρ is the density [kg/m3]; ν is the kinematic viscosity [m2/s]; xi is the spatial coordinate (x or y) [m]; and t is the
time [s].

It is important to note that Eq. 2 includes an additional term u′
iu

′
j , known as the Reynolds stress tensor, which

remains unknown. This term renders the model mathematically open, necessitating the inclusion of an additional
equation for model closure. Boussinesq proposed to model this tensor using his hypothesis, which involves making
an analogy to the Stokes model for the molecular viscous stress tensor [3]. The model is represented by Eq. 3.
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where k = 1
2u

′
iu

′
j denotes turbulent kinetic energy, δij is the Kronecker delta, and νt is the kinematic turbulent

viscosity. Unlike molecular viscosity, which is inherent to fluids, turbulent viscosity is a property of the flow.
Turbulent viscosity νt can be calculated using a turbulence model such as the Spalart-Allmaras, as employed

in the present study. The turbulent kinetic energy is incorporated into the pressure term, generating a modified
pressure p∗. With these considerations, we can express Eq. 2 as follows:
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2.1 The Spalart-Allmaras Turbulence Model

The Spalart-Allmaras (SA) turbulence model was developed and calibrated based on empirical relationships
from various flow types and dimensional analysis [3]. This model is grounded in a transport equation for the
auxiliary variable ν̃, as depicted in Eq. 5, disregarding transition terms. These terms, typically negligible in fully
developed turbulent flows, are omitted in the case under study.

∂ν̃

∂t
+

∂

∂xj
(uj ν̃) = Cb1S̃ν̃ − Cw1fw

(
ν̃

d

)2

+
1
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[
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∂ν̃
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]
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The terms on the right-hand side of Eq. 5 represent, respectively, the production, destruction, molecular and
turbulent diffusion, and dissipation of viscosity. The d is the distance to the nearest wall. The turbulent viscosity
νt is defined through the modified viscosity ν̃ and is damped by the function f1 near the walls:

νt = ṽfν1
, fν1

=
χ3

χ3 + C3
ν1

, where χ =
ṽ

ν
. (6)

In regions distant from the wall, the damping function f1 tends towards unity, νt = ν̃. The production term
varies with the distance from the wall and is attenuated by the function fv2:

S̃ = S +
ν̃

κ2d2
fν2 where fν2 = 1− χ

1 + χfν1
. (7)

In Eq. 7, the mean rate of flow deformation, S, is defined in terms of the magnitude of the vorticity tensor, Ω:
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√
2ΩijΩij , Ωij =

1

2
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− ∂uj
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)
. (8)

The function fw is defined as unity within the logarithmic region of the boundary layer, enhancing the pro-
duction term as it approaches the wall and approaching zero for regions farther away. Its definition is:

fw = g

[(
1 +

C6
w3

g6 + C6
w3

) 1
6

]
, g = r + Cw2(r

6 − r), r =
ν̃

S̃κ2d2
. (9)

The remaining empirical constants of the model are shown in Eq. 10. The number of variables in the model
makes it evident that it was designed based on well-known flows, particularly turbulent boundary layers.

Cw1 =
Cb1

κ2
+

1 + Cb2

σ
, Cw2 = 0.3, Cw3 = 2, κ = 0.41, Cv1 = 7.1, σ =

2

3
,

Cb1 = 0.1355, Cb2 = 0.622, Ct1 = 1, Ct2 = 2, Ct3 = 1.1, Ct4 = 2.
(10)

2.2 Immersed boundary method – IBM

The Immersed Boundary Method utilizes two calculation domains: the Eulerian and Lagrangian domains.
In the Eulerian domain, fluid flow equations are solved, while the force field is assessed in the Lagrangian do-
main to represent the immersed interface of the flow [7]. These domains interact via a source term added to the
Navier–Stokes equations, as shown in Eq. 4. This source term is defined across the entirety of the Eulerian domain,
considering its distribution over the Lagrangian domain, as outlined in Eq. 11.

fi(x⃗, t) =

{
Fi(X⃗, t) if x⃗ = X⃗.

0 if x⃗ ̸= X⃗.
(11)

The position of a fluid particle is denoted by x⃗, while X⃗ represents the position of a fluid particle adjacent to
the solid interface, as depicted in Fig. 1. The source term has non-zero values only at points coinciding with the
immersed geometry. This allows the Eulerian field to detect the presence of a solid interface [10].

The Multi-Direct Forcing (MDF) method proposed by Wang et al. [11] is the immersed boundary method
applied in the present work. The interface force is calculated iteratively using MDF to improve the accuracy of the
Lagrangian force calculation, Fi(X⃗, t). MDF aims to enforce the desired value of certain properties at the body
boundary [7]. Fi(X⃗, t) is determined through momentum equations applied to fluid particles residing at the fluid-
solid interface, as illustrated in Equation 12. The capital symbols are the same as Eq. 4, but they are calculated
only over the Lagrangian interface (Γ) shown in Fig. 1.
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Figure 1. Schematic representation of the Eulerian and Lagrangian domains
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∂Ūi
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By employing the temporal parameter U∗ proposed by Wang et al. [11] and discretizing the time operator,
we obtain Eq. 13 [7]. It is important to highlight that the time derivative in this equation was discretized using the
explicit Euler method, chosen for explanatory and didactic purposes to aid in understanding the modeling. In the
present work, temporal discretization was performed using the fourth-order Runge–Kutta method.
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i (X⃗, t) + U∗
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∆t
+RHSi(X⃗, t). (13)

where ∆t is the timestep and,
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Equation 13 is solved by decomposition, resulting in Eqs. 15 and 16:

U∗
i (X⃗, t)− Ui(X⃗, t)

∆t
+RHSi(X⃗, t) = 0, (15)

Fi(X⃗, t) =
Ui(X⃗, t+∆t)− U∗

i (X⃗, t)

∆t
. (16)

where Ui(X⃗, t+∆t) = UFI is the immersed boundary velocity, and U∗
i (X⃗, t) is given by:

Ui(X⃗, t) =

{
u∗
i (X⃗, t) if x⃗ = X⃗.

0 if x⃗ ̸= X⃗.
(17)

Equation 15 is solved in the Eulerian domain using the Fourier spectral space. The term u∗
i (x⃗, t) is then

interpolated to the Lagrangian domain, resulting in U∗
i (X⃗, t), as computed in Eq. 16 This result is then mapped

back to the Eulerian collocation points. Finally, the Eulerian velocities are updated using Eq. 18.

ui(x⃗, t+∆t) = u∗
i (x⃗, t) + ∆tfi. (18)

2.3 Fourier Pseudo-Spectral Method – FPSM

Equations 1 and 2 in the Fourier space are given by Eqs. 19 and 20:

∂̂ūj

∂xj
= ikj ̂̄uj = 0, (19)
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∂̂ūi
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where kj and ûj are the wave vector and the transformed velocity vector, respectively, and νef = ν + νt.
Equation 19 illustrates the orthogonality between the wave number vector ki and the transformed velocity

ûi(k⃗, t). We introduce the concept of a divergence-free vector plane, denoted as the π-plane. This plane is orthog-
onal to the wave number vector, implying that the transformed velocity resides within it. In the establishment of
this plane, each component in Eq. 20 assumes a distinct spatial orientation: the transient term and the viscous term
are contained within the plane, whereas the pressure gradient term is perpendicular to it. The orientation of the
nonlinear term is initially undetermined. Upon combining the components of Eq. 20, we find that:
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Equation 21 implies that:
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,

(22)
where ℘im is the projection tensor. The gradient pressure field is orthogonal to the π-plane. Consequently, the
pressure and velocity fields in Fourier space are no longer coupled. Nonetheless, the pressure field can be recovered
through a post-processing procedure, as demonstrated by Mariano et al. [7].

The non-linear term yields a product of transformed functions, which, according to the properties of Fourier
transforms, translates into a convolution operation and its solution is represented by a convolution integral. Solving
this integral computationally is highly expensive. Thus, it is managed through the pseudo-spectral Fourier method.
As a result, the momentum equation in Fourier space, employing the projection method, takes the following form:

∂ ̂̄ui(k⃗, t)

∂t
= −ikj℘im

∫
k⃗=r⃗+s⃗

̂̄um(r⃗) ̂̄uj(k⃗ − r⃗)dr⃗ + ikj℘im

∫
k⃗=r⃗+s⃗

ν̂ef (r⃗)
̂(

∂ūm

∂xj
+

∂ūj

∂xm

)
(k⃗ − r⃗)dr⃗. (23)

The non-linear term can be handled in different forms. The skew-symmetric is more stable and presents better
results [8]. Therefore, this procedure is used in this study. The non-linear term is solved using the pseudo-spectral
method. The velocity product is calculated in physical space and then transformed to spectral space.

3 Methodology

The simulation of fully developed flow in a channel is widely utilized to validate turbulence models due to
the simplicity of its geometry, making it particularly suitable for turbulence studies. Numerous researchers have
conducted accurate DNS calculations. In this work, data from Lee and Monser [1] is utilized as a reference.

The proposed numerical methodology combines the Spalart-Allmaras turbulence model and the Fourier
pseudo-spectral method to simulate turbulent channel flow. This methodology was validated at a Reynolds num-
ber of Re = 40,000 or Reτ = uτh

ν = 1,000, where uτ denotes the friction velocity and h represents half the
channel height. The no-slip boundary condition was applied in the normal direction to the wall, while the sym-
metry condition was applied in the spanwise direction. In the streamwise direction, periodic boundary conditions
were imposed using the immersed boundary method. The computational domain is structured with dimensions
Lx = 10h and Ly = h, discretized using a uniform grid of 64× 128 collocation points in the spanwise direction.

The proposed algorithm proceeds through several sequential steps: initially, solving Eq. 22 in Fourier spectral
space to compute the temporal parameter ̂̄ui(k⃗, t) using the 4-step Runge-Kutta method. Subsequently, applying an
Inverse Fast Fourier Transform to ̂̄ui(k⃗, t) yields ūi(x⃗, t) in physical space. This transformed field ūi(x⃗, t) is then
interpolated into the Lagrangian domain using Eq. 17. Concurrently, the Lagrangian force F ∗

i (X⃗, t) is computed
according to Eq. 16, and the Eulerian force f∗

i (x⃗, t) is derived using Eq. 17. The algorithm then updates the
Eulerian velocity to ui(x⃗, t+∆t) with Eq. 18, transforms it back to spectral space using FFT to obtain ûi(k⃗, t+∆t),
and cycles back to the initial step for iterative repetition.
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4 Results

The flow exhibits statistical homogeneity in the mean-flow and spanwise directions, facilitating Fourier
representations with Nx and Ny modes, respectively. In physical space, grid nodes are uniformly spaced with
∆x = Lx/Nx and ∆y = Ly/Ny in the x and y directions. Figure 2 compares the mean velocity profiles, normal-
ized by centerline velocity and plotted as a function of distance across the channel (normalized by channel width),
for fully developed flow with DNS data. Figure 3 shows the profile of the viscous shear stress, also compared with
DNS data.

From the analysis of these figures, it can be concluded that the numerical results align well with the DNS
data. The mean velocity profile, as shown in Fig. 2, closely follows the trend of the DNS data across the channel,
indicating that the proposed methodology accurately captures the velocity distribution. The maximum absolute
difference between the obtained result and the reference was 2.011%. Similarly, the viscous shear stress profile
in Fig. 3 demonstrates a good match with the DNS results, reflecting the algorithm’s capability to reproduce the
stress distribution within the channel flow.

Figure 2. Mean velocity profiles in fully developed turbulent channel flow

Figure 3. Comparison of viscous shear stress profiles between DNS data and present work

These comparisons validate the effectiveness of the combined Spalart-Allmaras turbulence model and Fourier
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pseudo-spectral method in simulating turbulent channel flow, thereby providing a reliable tool for further turbu-
lence studies.

5 Conclusions

The integration of the IMERSPEC method with the Spalart-Allmaras turbulence model has demonstrated a
high level of effectiveness in simulating turbulent flows in a plane channel. The results obtained in this study,
particularly the mean velocity and shear stress profiles, exhibit strong agreement with DNS data, validating the
accuracy and reliability of the proposed approach. This confirms the potential of the IMERSPEC methodology in
providing realistic and statistically efficient flow simulations.

Given the promising results, the methodology is recommended for more complex turbulent flow simulations,
especially in scenarios involving intricate geometries or higher Reynolds numbers. Future research could explore
the application of this combined approach in aerodynamic studies or environmental fluid dynamics, where accurate
turbulence modeling is crucial.
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