
Backcalculation of asphalt pavement materials’ moduli considering abso-
lute and relative errors

Lia B. G. Furtado 1, Evandro Parente Jr.1, Elias S. Barroso1, Lucas F. A. L. Babadopulos1, Samuel A. T. Silva2,
Juceline B. S. Bastos3

1Departamento de Engenharia Estrutural e Construção Civil, Universidade Federal do Ceará
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Abstract. Backcalculation is a procedure used to estimate the material properties of pavement layers from the
results of non-destructive tests, such as the Falling Weight Deflectometer (FWD). Assuming that the behavior is
linear elastic and the Poisson’s ratios and layers thicknesses are known, the backcalculation procedure determines
the elastic moduli that minimize the differences between the measured deflections and those computed using a
finite element model. However, since the assumed geometry, material properties, and mechanical behavior are
not identical to those of the actual pavement, the fitting is not perfect and the adopted error indicator (absolute
or relative) affects the backcalculation process. The effect of the adopted error measure on the efficiency of the
optimization method and backcalculated moduli is studied using numerical examples. The study uses the Finite
Element Method with the CAP3D program to simulate pavement deflections under FWD testing. BackAP software
is employed for backcalculating the elastic moduli of pavement layers, utilizing Gauss-Newton and Levenberg-
Marquardt methods to solve a Nonlinear Least Squares problem. The research emphasizes the impact of error
indicators - absolute versus relative - on the optimization process and accuracy. Results reveal that relative errors
lead to more reliable backcalculated moduli across various pavement types. This highlights the importance of
selecting appropriate error measures for accurate pavement analysis and material property assessment.
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1 Introduction

Backcalculation estimates material properties from non-destructive tests, such as the Benkelman beam and the
Falling Weight Deflectometer (FWD). It assesses pavement construction quality and monitors structural conditions.
In an FWD test, an impulse load is applied to the pavement surface via a loading plate, and sensors (geophones)
measure surface deflections at various offset. The measurement made by each geophone represents the deflection
of the pavement structure at a particular location. Peak deflection is measured by the geophone directly below the
load application point and deflections are smaller for more distant geophones [1].

The Finite Element Method (FEM) can be used to evaluate pavement deflections, based on known geometry,
loading, and mechanical properties. Assuming linear elastic behavior and known Poisson’s ratios, the backcal-
culation procedure consists of the determination of the elastic moduli that minimize the differences between the
simulated and measured deflections.

The model fitting can be obtained by the minimization of the Sum of Squares of Errors (SSE), which consists
of the Nonlinear Least Squares (NLS) problem. Several methods can be used to solve this problem [2, 3].

It is important to note that the geometry, material properties, and mechanical behavior assumed by the finite
element model are not identical to those of the actual pavement. Furthermore, the measured deflections present
inevitable errors due to the limited accuracy of actual sensors.

Thus, the fitting is not perfect and the adopted error indicator (absolute or relative), affects the the back-
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calculation process since it corresponds to the objective function to be minimized by the optimization algorithm.
Therefore, this work aims to study the effect of the adopted error measure on the efficiency of the optimization
method and backcalculated moduli using numerical examples.

2 Finite Element Model

The FWD load (F ) is applied at a circular loading plate of radius (r). Considering that the resulting pressure
applied to the pavement is uniform

p =
F

πr2
(1)

and that the deflected region is much smaller than the pavement dimensions, the displacements, and stresses present
axial symmetry. Therefore, in this work, the simulated deflections are computed using an efficient axisymmetric
FE model with a mesh composed of quadratic finite (Q8) and infinite (L6) elements [4].

Numerical analyses are carried out using the CAP3D program [5]. The use of infinite elements allows to re-
duce of the number of finite elements and improves the displacements accuracy [4]. The mesh generation algorithm
ensures that there is a node at the position of each geophone.

In FEM, the nodal displacement vector (u) is computed by solving the linear system of equilibrium equations:

Ku = f (2)

where (K) is the global stiffness matrix and (f ) is the external load vector. The global stiffness of the FE model is
assembled by the classical direct stiffness approach summing up the element stiffness matrices (Ke):

Ke =

∫
Ve

BT CB dV, C = EA(υ) (3)

where Ve is the element volume, B is the strain-displacement matrix, C is the elastic constitutive matrix, E is the
modulus of elasticity, and A is a matrix depending only on the Poisson’s ratio (υ) [6].

The NLS algorithms discussed in the next section require the gradients of nodal displacements. These deriva-
tives can be computed by differentiation of eq. (2) with respect to parameter xj :

K
∂u

∂xj
= hj ⇒ hj =

∂f

∂xj
− ∂K

∂xj
u. (4)

It is important to note that ∂f/∂xj = 0 since the external load vector does not depend on the material parameters.
Furthermore, ∂K/∂xj can be exactly computed using finite differences, since K depends linearly on the modulus
of elasticity (E), as shown in eq. (3). This procedure to exactly evaluate the displacement derivatives required by
the NLS algorithms was implemented in the CAP3D program. It requires the solution of an additional linear system
for each model parameter. Since the matrix K was already factored to solve eq. (2), the additional computational
cost is small in comparison with a standard FE analysis.

3 Pavement Backcalculation

Pavement backcalculation can be written as a Nonlinear Least Squares (NLS) problem:

min
x∈Rn

f(x) =
1

2

m∑
i=1

(
ŷi − yi

yi

)2

=
1

2

m∑
i=1

r2i =
1

2
rT r, n ≤ m (5)

where ŷi are the simulated deflections (FEM), yi are the measured deflections (FWD), yi are normalization factors,
r is the residual vector, and

x =
1

E
[E1, · · · , En]

T (6)

is the vector of unknown parameters, where Ej is the modulus of each pavement layer and E is a normalization
factor. The Gauss-Newton and the Levenberg–Marquardt methods [2, 3] are applied in this work to solve the NLS
problem.
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3.1 Gauss-Newton

The Gauss-Newton (GN) method is obtained by the application of the Newton method to the NLS problem.
The Newton method is based on a quadratic approximation of the function to be minimized:

f(xk+1) ≈ f(xk) + dT
k gk +

1

2
dT
kHk dk, (7)

where k is the iteration number, d is the search direction, g = ∇f(x) is the gradient, and H = ∇2f(x) is the
Hessian matrix. The minimization of the approximate quadratic function yields:

gk+1 ≈ gk +Hk dk = 0. (8)

Thus, the search direction (d) at each iteration k is evaluated solving the linear system:

Hk dk = −gk. (9)

If the Hessian is positive-definite then it can be easily shown that dk is a descent direction (dT
k gk < 0) and the

function value is reduced as we move in this direction.
The gradient and Hessian of the Sum of Squared Errors (SSE) function defined in eq. (5) are given by

g = JT r, H = JTJ+
m∑
i=1

ri ∇2ri, (10)

where J is the Jacobian matrix:

J = [Jij ] =

[
∂ri
∂xj

]
=

[
∂ŷi
∂xj

]
. (11)

The Gauss-Newton method is obtained neglecting the second term of the Hessian defined in eq. (10):

H ≈ JTJ. (12)

After the computation of the search direction, the new estimate of the parameter vector is computed as

xk+1 = xk + αdk, (13)

where α is the step size along the search direction. The classical Gauss-Newton method considers α = 1.
In this work, a backtracking line search is adopted in order to improve the algorithm’s robustness and effi-

ciency. This algorithm starts with a unit step size (α0 = 1) and check the descent condition

f(xk + αl dk) < f(xk) + αl (β gT
k dk), (14)

where l is the line search iteration and β ∈ (0, 1) [2, 7]. If this condition is satisfied, the step size is accepted,
otherwise, it is reduced:

αl+1 = η αl (15)

with η ∈ (0, 1). The process is repeated until a sufficient function decrease is obtained. It is important to note
that this approach allows for a unit step size at the solution, which is a condition for quadratic convergence of the
Newton method. Furthermore, since the objective function is reduced at each iteration, the method will eventually
converge to the local minimum.

The iterative process described in eq. (13) can be stopped when:

NRMSE =

√
rT r

m
< tol1 or ∥g∥ < tol2, (16)

where NRMSE is the Normalized Root Mean Square Error, while and tol1 and tol2 are the convergence tolerances.
The convergence rate of the Gauss-Newton method depends on how close eq. (12) approximates the true

Hessian. Quadratic convergence can be obtained when the second term of the Hessian matrix, defined in eq. (10),
is small close to the solution, which can occur when the residual is very small (ri ≈ 0) or the Jacobian is affine
with respect to the parameters (∇2ri = 0) [2].
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3.2 Levenberg–Marquardt

The Levenberg–Marquardt (LM) method [2, 3] was proposed as a more robust alternative to the Gauss-
Newton method. It is based on eq. (9), but use a modified Hessian:

Hk = JT
k Jk + λk I (17)

where the damping parameter (λk > 0) ensures that the Hk is positive definite, generating a descent search
direction dk at all iterations.

It is important to note that, for large damping factors, dk ≈ −gk/λk, which is a short step in the steepest
descent direction. This is a good option if the current iterate xk is far from the solution. On the other hand,
eq. (17) reduces to eq. (9) when λk is very small, generating the same search direction as the Gauss-Newton
method, which is very good in the final iterations when xk is close to the solution and Gauss-Newton can present
quadratic convergence. Since the damping factor controls not only the search direction but also the step size,
the Levenberg–Marquardt method is used without line searches. However, the new iterate is accepted only if it
decreases the error: {

xk+1 = xk + dk, if f(xk + dk) < f(xk)

xk+1 = xk, otherwise.
(18)

Convergence is checked using eq. (16).
Several schemes have been proposed in the literature to update the damping factor [3, 8, 9]. The main idea is

to begin with a relatively large factor λ. If the step computed by eq. (17) decreases the error, then λ is decreased.
Otherwise, λ is increased. In this work, the damping factor is updated as:{

λk+1 = λk/γ1, if f(xk + dk) < f(xk)

λk+1 = λk γ2, otherwise,
(19)

where λ0, γ1, and γ2 are positive real numbers.

3.3 Scaling and error indicator

The objective function (f ) and the parameter vector (x) used in the backcalculation process are normalized,
as shown in eqs. (5) and (6). Normalization simplifies the definition of convergence tolerances, makes the problem
independent of the adopted system of units, and improves the problem scaling.

It is important to note that better scaling improves the performance of gradient-based optimization algorithms
[10]. Thus, in this work the normalization factor E is defined to bring the parameters xj close to 1, avoiding
working with large values. For instance, E = 109 Pa is used for SI units.

On the other hand, the definition of deflection normalization factors vi is more complex since they affect
the error indicator to be minimized. To obtain consistent results and improve scaling, two different normalization
schemes are used in this work depending on the chosen objective function. Thus, yi = 10−3 is used as the
normalization factor when the objective function is the absolute error, while the measured deflection is used as the
normalization factor (yi = yi) when the objective function is the relative error. Thus, the mean deflection is used
as the normalization factor (yi = mean(y)) when the objective function is the absolute error, while the measured
deflection is used as normalization factor (yi = yi) when the objective function is the relative error.

4 Numerical Examples

The effects of the error indicator are assessed using numerical examples that consider relative and absolute
errors. These examples are solved using BackCAP, a pavement backcalculation software based on the Finite
Element Method and nonlinear optimization methods [11–13]. BackCAP is implemented in C++ using Object
Oriented Programming (OOP) concepts. The program was modified to allow the use of the relative error as the
objective function, as the original version considered only the absolute error.

The optimization parameters adopted in the numerical examples are:
• Stopping Criteria: kmax = 100, tole = 10−6 (Sec. 4.1) and 10−3 (Sec. 4.2), tolg = 10−6.
• Gauss-Newton: β = 0.2, lmax = 10, η = 0.5.
• Levenberg-Marquardt: λ0 = 10−6, γ1 = 10, γ2 = 10.
• Bound Constraints: ε = 10−2.
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Maceió, Alagoas, November 11-14, 2024



L. Furtado, E. Parente, E. Barroso, L. Babadopulos, S. Silva, J. Bastos

4.1 Pavement with different materials

This example consists of a pseudo-experimental problem corresponding to the backcalculation of the prop-
erties of three different pavement structures. The first is a well-designed structure with Hot Mix Asphalt (HMA)
coating, simple graded gravel at the base, clayey soil at the subbase, on the silty subgrade. The second is a semi-
rigid pavement, with graded gravel treated with cement used in the base, surpassing the stiffness of the upper layer,
and the third is a defective structure, with poor compaction of the subbase, reducing its stiffness and making it less
stiff than the subgrade.

Figure 1 summarizes these three pavements, showing the material properties, layer thicknesses, and the rep-
resentation of the FWD test, including the applied load, the radius of the plate, and the position of each geophone.
Table 1 presents the deflections for each pavement obtained by simulation using the finite element model. The seed
moduli used are E0 = [3000; 280; 140; 190] MPa, based on the recommendations of the FHWA [14].

Figure 1. Schematic representation of the pseudo-experimental problem

Table 1. FWD deflections obtained by FEM

Model
Deflections (µm)

d0 d20 d30 d45 d60 d90 d120

Pav1 441.445 268.638 191.629 133.363 101.277 66.7199 49.0573
Pav2 223.192 182.327 159.393 129.566 105.198 71.2286 51.2071
Pav3 541.040 341.055 241.568 156.678 109.807 66.0115 47.7723

Both algorithms (GN and LM) were able to determine the exact moduli (shown in Figure 1) of the layers
of each pavement for both absolute and relative minimization. This happens because the pseudo-experimental
problem has a fitness error equal to zero at the end of the optimization process, then the normalization factor has
no influence on the final result.

For Pav1, GN and LM required both 6 iterations for both normalization factors. For Pav2, GN and LM needed
9 iterations for absolute minimization and 10 for relative minimization. For Pav3, GN was more efficient, requiring
6 iterations for both normalization, while LM needed 12 for absolute and 13 for relative. The convergence behavior
of the two algorithms is similar, but GN was more efficient for Pav3. The difference in the number of iterations was
very small when comparing the absolute and relative minimization, showing that the adopted error indicator does
not have a significant influence on the efficiency of this problem. Similar behavior is expected for backcalculation
problems presenting small errors.

4.2 Four-layer highway pavement

This example consists of the backcalculation of an actual highway pavement where the FWD test was per-
formed in 5 different locations. It is acknowledged that some authors in this subject have already indicated that
backcalculation may have excessive uncertainty for pavements with asphalt layers thinner than 7.5 cm [14, 15].
The layer thicknesses, the representation of the FWD test, and the adopted Poisson’s ratios are presented in Figure
2, while the applied load value, the recorded air and pavement surface temperatures, and the deflection basins are
in Table 2. The seed moduli used are E0 = [2000; 100; 100; 100] MPa.

Table 3 presents the results obtained using both error indicators (absolute and relative), including the backcal-
culated moduli (no temperature correction was made for surface modulus (E1), so the high temperatures recorded
(Table 2) explain the low values in this modulus, considering the viscoelastic behavior of the material), the number
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Figure 2. Schematic representation of the multi-layer highway pavement

Table 2. FWD data for a multi-layer highway pavement

st.
Temp. (oC)

F (kN)
Deflections (µm)

air pav. d0 d20 d30 d45 d60 d90 d120

1 34 45 46.383 290 159 107 68 47 29 23
2 33 47 45.851 843 517 342 209 143 73 44
3 34 49 45.851 843 517 342 209 143 73 44
4 34 47 45.693 1047 665 454 279 195 113 74
5 33 47 46.535 354 192 130 85 62 38 27

of iterations, the CPU time necessary to get these results for GN and LM algorithms and the NRMSE for both
normalization procedures. These results show that the computational efficiency of both methods (GN and LM) is
similar for the absolute error, but present a large variability for the relative error. Furthermore, the results indicate
that the minimization of the relative error is much more difficult than the minimization of the absolute error. In this
regard, GN was more robust as it successfully solved all stations for both errors, while LM was unable to solve the
4th station considering the relative error and the numerical parameters presented in Section 4.

Figure 3 shows the ratio between the moduli obtained minimizing the relative and absolute errors. As shown
in this figure, the difference in subgrade modulus (E4) is almost insignificant. On the other hand, very large
differences (up to 40%) are observed for the upper layers, especially the surface and base courses. Therefore,
the error indicator adopted in the backcalculation process does not only affects the convergence of the numerical
algorithms but also the obtained solution.

Table 3. Backcalculated elastic moduli of the pavement sections’ layers and corresponding processing parameters

st. Min. Absolute Min. Relative
Elastic Modulus (MPa) Iter. CPU time (s) NRMSE

(%)

Elastic Modulus (MPa) Iter. CPU time (s) NRMSE
(%)E1 E2 E3 E4 GN LM GN LM E1 E2 E3 E4 GN LM GN LM

1 1691 708 300 447 6 6 2.2 2.0 0.06 2126 640 320 443 9 9 2.6 2.8 2.03
2 875 166 22 112 8 20 3.2 6.4 0.61 744 207 18 120 41 48 21.8 10.7 4.00
3 1276 254 56 171 8 9 3.3 3.0 0.59 995 355 41 188 44 56 24.8 13.2 5.16
4 1703 163 57 115 7 13 3.0 3.7 0.41 1022 224 46 120 11 - 3.7 - 2.98
5 1176 592 280 349 6 6 2.2 2.3 0.07 897 682 257 355 8 8 2.1 2.5 1.46

Figure 3. Ratio between the moduli obtained by relative and absolute minimization
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5 Conclusion

This paper addressed the effects of the error indicator (absolute or relative) on the convergence of back-
calculation algorithms and the obtained moduli of pavement layers. A very different behavior was obtained for
pseudo-experimental and actual FWD tests.

The former problems present a perfect fit corresponding to zero absolute and relative errors. In this case,
the expected solution was found by both Gauss-Newton and Levenberg-Marquadt methods, and the convergence
behavior of these algorithms using absolute and relative error was similar.

On the other hand, backcalculation considering experimental FWD data does not present a perfect fit due to
the difference in the actual loading, geometry, mechanical behavior, and material properties of the pavement layers
and those considered in the finite element model. In this case, using a relative error leads to a harder-to-solve
optimization problem. Furthermore, the differences in the backcalculated moduli obtained considering both error
indicators may be significant, especially for the upper pavement layers.

Therefore, choosing absolute or relative error indicators has significant effects on the backcalculation process
and obtained results. Due to its importance, this subject needs more in-depth studies.
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