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Abstract. In civil engineering, the finite element method (FEM) is employed to simulate the behavior of various 

structures. To address associated uncertainties, numerical model calibration based on experimentally obtained 

modal data is used, allowing for the update of difficult-to-obtain properties to better match the model’s dynamic 

response to that of the real structure. This study evaluates two metaheuristic algorithms, Particle Swarm 

Optimization (PSO) and Genetic Algorithm (GA), for model calibration. A simply supported beam was modeled 

in ANSYS to extract pseudo-experimental modal data, including ten natural frequencies and corresponding mode 

shapes, with uncertainties represented by five design variables. The search spaces were defined based on literature 

values, and initial populations were generated using Latin Hypercube Sampling (LHS). MATLAB managed the 

optimization process, interfacing with ANSYS to iteratively adjust model parameters and minimize deviations in 

natural frequencies and Modal Assurance Criterion (MAC) values between numerical and reference models. 

Results show satisfactory performance for both algorithms, with PSO achieving better values for the same 

computational effort. Optimal settings for PSO were determined by balancing accuracy and computational 

efficiency. These findings highlight the effectiveness of calibration methods within the problem's constraints and 

PSO's superior capability in consistently handling calibration. 
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1  Introduction 

Civil structures are intricately connected to societal life globally, and their design and functionalities both 

influence and are influenced by the societal organization in many aspects. Therefore, the collapse of a structure or 

its inability to serve its intended purpose has a significant impact on economic activities, daily social routines, and 

public safety. Despite the importance of maintaining structural integrity, assessments often rely on subjective 

visual inspections, which can be inaccurate and may overlook critical issues, as noted by Aktan et al. [1] and 

Sanayei et al [2]. Furthermore, the deterioration of civil structures occurs due to numerous factors, most of them 

presenting high levels of uncertainty, such as cyclic traffic loads, steel corrosion, material aging, environmental 

conditions, and extreme events, making it harder to define the structural health in terms of age and usage alone, as 

Chen [3] presented. Given these challenges, continuous in-service monitoring of the structure is an essential 

process for reliably assessing the structural health and safety. The development of finite element (FE) models is 

crucial for this analysis, as they provide essential baseline information to be later compared with measured values 

and aid in detecting structural damage [3]. 

However, these models often suffer from inaccuracies due to factors such as simplified modeling assumptions 

or uncertainties in material and geometric properties, which can lead to incorrect conclusions, as discussed by 

Ribeiro et al [4]. Thus, proper calibration is essential for accurately representing the structure. Model updating 

methods are employed to adjust the FE model based on measured modal data and can be divided into two groups: 
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direct and indirect [5] [6]. Direct methods update the mass and stiffness matrices of the structure to reproduce the 

measured vibration modal data, while indirect methods use parameter sensitivity to update the analytical model, 

minimizing discrepancies between measured and simulated data by optimizing a set of parameters [3]. 

The effectiveness of the calibration process depends on three key factors: the objective function and 

constraints, the structural updating parameters, and the optimization techniques [7]. While the first factor can be 

defined as a numerical function that assesses the discrepancies between measured modal data and the 

corresponding FE model results, the second factor strongly depends on the experimenter’s physical understanding 

of the structure at a local level, such as the behavior of the connections between structural elements and their 

impact on the modal response [8]. Finally, the selection of an optimization algorithm plays a critical role. While a 

manual parameter tuning is possible, in practical cases it becomes unfeasible and inefficient. Some global 

optimization algorithms, such as the genetic algorithm and the simulated annealing, have shown success in 

minimizing the objective function. Despite their applicability, these algorithms face a significant barrier: the 

demand for high computational efforts, especially when the number of updating parameters is large and when 

significant differences between the measured data and the original model exist. In addition to the aforementioned 

metaheuristic algorithms, gradient-based methods, such as Levenberg-Marquardt [9], can also be used. These 

algorithms offer rapid convergence when there is a clear relationship between the parameters and the objective 

function, although they are less effective for escaping local minima. 

In this paper, the application of optimization algorithms towards the calibration of a finite element model is 

explored by using an example of a simply supported beam. Different metaheuristic algorithms are tested, due to 

their capability of explore the solution space widely, avoiding local minima, and flexibility to handle diverse 

optimization challenges, and key algorithm parameters are discussed. 

2  Methodology 

To evaluate the performance of the iterative calibration method based on optimization algorithms, a 

numerical model of a simply supported concrete beam with a rectangular cross-section of 0.5 m width, 1.0 m 

height, and 10 m length was proposed, as shown in Fig. 1. The beam is considered to be on flexible supports, 

represented by springs with stiffnesses k1 and k2. 

Figure 1. Schematic representation of the structure, dimensions in centimeters 

The process involved the use of two software packages: ANSYS Mechanical APDL 2020 R1 [10], which is 

used for finite element modeling and extracting modal parameters, and MATLAB R2020a [11], which receives 

the model data, manages the optimization algorithm, and executes ANSYS with adjusted parameters at each 

iteration, as illustrated in the flowchart in Fig. 2. 
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Figure 2. Flowchart of the calibration methodology based on optimization algorithms 

2.1 Structural Modelling 

The structure was modeled in ANSYS using the BEAM188 element, a 2-node element with 6 degrees of 

freedom per node (three translations and three rotations). The mesh was discretized into 100 elements along the 

length, and the adopted mechanical properties were as follows: Young’s modulus as 23 GPa, Poisson's ratio as 

0.2, and the density of the concrete was taken as 2500 kg/m³. Elastic supports were defined using COMBIN14 

spring elements, with stiffness set to 10×106 N/m for the first support and 15×106 N/m for the second support. 

Regarding boundary conditions, out-of-plane displacement was restricted for all nodes, vertical displacement was 

limited with the spring at both hinged supports and horizontal displacement was prevented at one of the supports. 

Rotation was allowed at both ends. For the modal analysis, the determination of ten natural frequencies and their 

corresponding vibration modes was requested, using the Lanczos method to solve the eigenvalue and eigenvector 

problem. The modal data of the structure is then exported and considered as the target values for the calibration to 

be obtained with an optimization procedure (in real structures, these would be obtained experimentally). Three of 

the vibration modes of the numerical model are presented in Fig. 3. 

 

 

 

Vibration mode 1 (f = 6,27 Hz) Vibration mode 3 (f = 33,4 Hz) Vibration mode 4 (f = 80,2 Hz) 

Figure 3. Vibration modes of the target model. 

 

2.2 Design Variables 

The input parameters of the initial model were used as design variables, namely the modulus of elasticity (E), 

Poisson's ratio (ν), density (ρ), and the stiffness coefficients of both supports (𝑘1 and 𝑘2). The geometric 

characteristics (cross-sectional dimensions and beam length) were considered fixed. The search range limits for 

the material parameters were defined based on the literature, given that the structure is made of concrete, while 

the range of support stiffness was kept broad due to significant uncertainty. The parameters and ranges are 
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indicated in Tab. 1: 

Table 1. Design variables and search range 

Parameter Lower Bound Upper Bound Unit 

E 20 30 GPa 

 0.2 0.5 - 

 2400 2600 kg/m³ 

k1 10 × 105 10 × 107 N/m 

k2 10 × 105 10 × 107 N/m 

2.3 Objective Function 

The function to be minimized by the optimization techniques employed is presented in Eq. (1) and comprises 

a term related to the natural frequencies and another to the MAC values, proposed by Allemang and Brown [12] 

and shown in Eq. (2): 

𝑓 = ∑
|𝑓𝑖

𝑡𝑎𝑟 − 𝑓𝑖
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Where the terms 𝑓𝑖
𝑡𝑎𝑟 and 𝜙𝑖

𝑡𝑎𝑟 represent pseudo-experimental vibration data, specifically the natural 

frequency and the displacement vector (determined from ten equally spaced points along the beam) corresponding  

to vibration mode i, both of which were extracted from the initially established target model. Conversely, 𝑓𝑖
𝑛𝑢𝑚 

and 𝜙𝑖
𝑛𝑢𝑚 refer to the values from the numerical model to be analyzed at each iteration of the optimization problem. 

2.4 Solution Algorithms 

To solve the proposed problem, a piece of code was developed on the MATLAB platform to serve as the 

interface between the structural analysis program used in this work, which was ANSYS software, and the 

algorithms employed to obtain the optimal solution. For this study, two metaheuristic algorithms were used to 

verify the optimal solution of the problem: the Genetic Algorithm proposed by Holland [13] and the Particle Swarm 

Optimization (PSO) algorithm proposed by Kennedy and Eberhart [14] and modified by Shi and Eberhart [15]. 

The algorithms employed in this study are available within the MATLAB toolbox; however, custom 

implementations developed by the authors were utilized. 

3  Results and Discussion 

3.1 Optimization 

The optimization step aimed to calibrate the parameters to minimize the differences between the dynamic 

responses of the numerical model and the pseudo-experimental data from the target (known) model. For the 

structure under analysis, 5 design variables were updated using 10 frequencies and 10 associated vibration modes. 

The initial population was generated using the Latin Hypercube Sampling (LHS) method to ensure a more uniform 

and representative sampling of the search space compared to purely random sampling methods. 

Initially, a configuration step was performed by varying the number of iterations and population size in 

independent runs to evaluate the relationship between computational cost and the minimization of the objective 

function (presented in Eq. (1)), conducting five runs for each configuration and recording the averages found for 
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both optimization algorithms. The stopping criterion employed in the analyses was based on the number of 

iterations, to evaluate the accuracy of each run for a given number of evaluations performed. 

For the PSO, whose results are presented in Tab.2, the values of the personal and social acceleration constants 

were both set to 2.05, as recommended by [16], in order to balance the individual exploration of particles with 

cooperative group search. A damping ratio for the inertia weight of 0.99 was applied, which gradually decreases 

the inertia coefficient over the iterations to promote greater exploration in the initial phase and refined 

convergence, thus avoiding local minima. For the GA, indicated in Tab. 3, a crossover rate of 90%, a mutation 

rate of 5% and an elitism rate of 5% were established, which was considered to adjust the initial population adopted 

in the GA compared to PSO.  

Table 2. Optimization results using PSO Algorithm 

Parameter Target Value 

30 iterations, 

population of 70 

50 iterations, 

population of 50 

50 iterations, 

population of 70 

70 iterations, 

population of 70 

Updated 

Value 

Error 

(%) 

Updated 

Value 

Error 

(%) 

Updated 

Value 

Error 

(%) 

Updated 

Value 

Error 

(%) 

E 23.00 GPa 22.75 -1.09% 23.02 0.09% 23.10 0.43% 23.20 0.87% 

 0.20 0.20 -0.96% 0.20 0.01% 0.20 0.00% 0.20 0.00% 

 2500 kg/m³ 2474.86 -1.01% 2503.97 0.16% 2509.67 0.39% 2520.60 0.82% 

k1 1.00E+07 N/m 9.90E+06 -1.03% 1.00E+07 0.17% 1.00E+07 0.38% 1.01E+07 0.82% 

k2 1.50E+07 N/m 1.48E+07 -1.04% 1.50E+07 0.15% 1.51E+07 0.39% 1.51E+07 0.82% 

Individuals Evaluated 2100 2500 3500 4900 

Cost Function Value 2.24E-03 7.27E-05 1.32E-05 3.73E-06 

 

Table 3. Optimization results using Genetic Algorithm 

Parameter Target Value 

30 iterations, 

population of 70* 

50 iterations, 

population of 50* 

50 iterations, 

population of 70* 

70 iterations, 

population of 70* 

Updated 

Value 

Error 

(%) 

Updated 

Value 

Error 

(%) 

Updated 

Value 

Error 

(%) 

Updated 

Value 

Error 

(%) 

E 23.00 GPa 23.43 1.88% 23.40 1.74% 23.30 1.30% 23.70 3.04% 

 0.20 0.21 2.60% 0.22 11.61% 0.20 -0.29% 0.20 -0.33% 

 2500 kg/m³ 2543.28 1.73% 2524.72 0.99% 2531.68 1.27% 2574.70 2.99% 

k1 1.00E+07 N/m 1.02E+07 1.87% 1.01E+07 0.57% 1.02E+07 2.09% 1.01E+07 1.32% 

k2 1.50E+07 N/m 1.53E+07 1.92% 1.52E+07 1.01% 1.51E+07 0.97% 1.60E+07 6.57% 

Individuals Evaluated 2100 2500 3500 4900 

Cost Function Value 8.41E-03 1.11E-02 7.35E-03 1.64E-04 

*with a 5% increase to account for individuals preserved due to elitism 

It is possible to verify that the PSO algorithm demonstrates better performance, consistently achieving lower 

cost function values for the same computational cost, as indicated in the tables above by the evaluated individuals, 

in addition to achieving parameter values that are closer to the target values. This can be attributed to the 

exploratory nature of PSO, which allows for a more effective global search within the solution space. The GA, 

although robust, may get trapped in local minima due to its reliance on crossover and mutation operators. 
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3.2 Discussion of Results 

Evaluating the PSO results, indicated in Tab. 2, it is noticeable that using 50 iterations for a population of 50 

individuals presents a satisfactory value for the cost function, significantly better than the case of 30 iterations and 

70 individuals and close to the solution with 70 individuals and 70 iterations, but with practically half the 

computational cost. This trend is shown in the graph in Fig. 4 (a), indicating that increasing the number of 

individuals beyond 2500 does not result in significant performance improvement, which was confirmed in 

consecutive runs with the same parameters. Figure 4 (b) shows the convergence graph of PSO for the case with 

2500 individuals. 

 

(a) (b) 

 Figure 4. (a) Cost function value versus computational cost; (b) PSO Convergence History 

Therefore, to solve the problem under study, the PSO algorithm was chosen, with a run of 50 iterations and 

a population of 50 individuals. Five more independent runs were performed under these conditions, and the results 

shown in Tab. 4 represent the values obtained for the first six vibration modes for the average solution. Table 5 

presents the final values for the calibrated parameters. 

Table 4. Resulting modal parameters 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

ftar (Hz) 6.26920 12.08592 33.35528 80.17519 145.79792 223.66127 

fnum (Hz) 6.26906 12.08573 33.35534 80.17555 145.79849 223.66191 

Error (%) -0.00223% -0.00157% 0.00018% 0.00045% 0.00039% 0.00029% 

MAC 0.99999973 0.99999986 0.99999972 0.99999982 0.99999984 0.99999981 

Table 5. Resulting calibrated model parameters 

Parameter 
E   k1 k2 

(GPa) - (kg/m³) (N/m) (N/m) 

Target Value 23.00 0.20 2500.00 1.00E+07 1.50E+07 

Updated Value 23.32 0.20 2534.40 1.01E+07 1.52E+07 

Error (%) 1.38% 0.02% 1.38% 1.37% 1.38% 

As shown in Tab. 4 and 5, the discrepancies between the frequencies of the calibrated and reference models 

are negligible, and the largest difference in the calibrated parameters values was less than 1.4%. These results 

demonstrate that the updated numerical model achieved properties very close to those of the target model. 
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4  Conclusions 

The methodology employed proved to be effective for the calibration of numerical models using 

metaheuristic algorithms. The PSO algorithm demonstrated superior performance compared to the GA in terms of 

accuracy and computational cost. Future research could explore the application of this methodology to different 

types of structures and boundary conditions, as well as consider other optimization techniques for comparison, 

such as the application of a hybrid genetic optimization strategy with a Levenberg-Marquardt local search, as 

presented in [17]. Also, the effects of noise in vibration measurement data as well as a limited number of points 

for determination of the vibration modes should be addressed. 
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