
Many-objective design of tall buildings considering second order effects
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Rua José Lourenço Kelmer s/n, 36036-900, Juiz de Fora - MG, Brazil
afonso.lemonge@ufjf.edu.br
3Department of Civil and Environmental Engineering and Tecgraf Institute, PUC-Rio
Rua Marquês de São Vicente, 225, 22451-900, Gávea, Rio de Janeiro - RJ, Brazil
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Abstract. This research investigates the application of multi-objective optimization methodologies in developing
economically viable and structurally efficient spatial steel constructions. It emphasizes the significance of opti-
mizing performance alongside cost reduction in practical engineering scenarios. The investigation encompasses
the minimization of maximum horizontal displacement, the maximization of the first natural frequency of vibra-
tion, the maximization of the critical load factor concerning the global buckling mode of the structure, and weight
minimization as primary objectives. Furthermore, the analysis integrates considerations for both local and global
second-order effects. Moreover, it delineates a systematic framework for selecting optimal designs, employing
three distinct evolutionary algorithms grounded in differential evolution coupled with a multi-criteria decision-
making approach.
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1 Introduction

Steel space frames are widely employed in civil engineering across various domains. Their applications span
diverse structures, including large shopping centers, residential buildings, sports stadiums, museums, and cultural
centers. Steel’s superior strength-to-weight ratio makes it an attractive material for achieving lighter structural
solutions. However, as steel frames increase in height, several critical challenges arise in design. These include
horizontal displacements induced by wind loads, compromised dynamic behavior due to reduced natural vibration
frequencies and increased flexibility, and diminished overall stability. The integration of bracing systems is crucial
to mitigate these challenges arising from the inherent slenderness of such structures.

With advancements in engineering technology and rising population demands, the complexity of structural
systems has increased concurrently. Simultaneously, the modern economic landscape has become highly compet-
itive, necessitating the development of more efficient and economically viable projects. Structural optimization
studies play a pivotal role in this context, aiming to determine optimal values for design variables that either
minimize costs or maximize performance while meeting all project requirements.

Engineering design is a meticulous process involving critical decision-making from conceptualization to final
detailing. Decision-making in engineering design is often intricate due to conflicting objectives. While solving
a single-objective problem within an evolutionary framework is relatively straightforward, addressing multiple
conflicting objectives results in a trade-off curve known as the Pareto front. Extracting optimal solutions from this
front poses a significant challenge for decision-makers [1].

This study focuses on solving a multi-objective optimization problem related to a spatial steel frame, consid-
ering various types of bracing systems, orientation of the principal inertia axes of the columns, and approximate
geometric nonlinear analysis. Meta-heuristic approaches, specifically differential evolution-based algorithms and
a multi-criteria method for extracting solutions are employed. The remainder of this paper is structured as follows:
Section 2 provides a brief overview of the materials and methods used; Section 3 outlines the formulation of the
optimization problem; Section 4 details the numerical application conducted; and finally, Section 5 presents the
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analysis of results, concluding remarks, and avenues for future research.

2 Materials and methods

Multi-objective optimization entails simultaneous consideration of conflicting objectives, yielding a set of
non-dominated solutions and forming a Pareto front. According to the dominance principles articulated by Deb
[2], a solution A dominates another solution B if it is either better or equal in all objective functions or strictly
superior in at least one objective function. This study employs three differential evolution-based algorithms: Suc-
cess History-based Adaptive Multi-Objective Differential Evolution (SHAMODE) by Panagant et al. [3], Success
History-based Adaptive Multi-Objective Differential Evolution with Whale Optimization (SHAMODE-WO) en-
hanced by Mirjalili and Lewis [4], and Multi-Objective Meta-heuristic with Iterative Parameter Distribution Esti-
mation (MMIPDE) proposed by Wansasueb et al. [5]. Dominance and crowding distance principles are applied
to identify high-quality solutions, while constraint-based, non-dominated sorting ensures the ranking of feasible
solutions. Furthermore, this study incorporates the Multi Tournament Decision Method (MTD) introduced by Par-
reiras and Vasconcelos [6], a predefined methodology used to extract solutions from the Pareto front and determine
weighting coefficients based on the relative importance of each objective.

3 Formulation of the optimization problem

The goal of the multi-objective optimization problem is to obtain the Pareto trade-off curve with the optimal
set of solutions, represented by the integer index vector x = I1, I2, ..., Ii (design variables) which defines the con-
figuration of the bracing system, column orientations, and commercial steel profiles. This problem seeks to achieve
four objectives: (i) minimizing the overall weight of the structure (W (x)), (ii) minimizing the maximum horizontal
displacement (δmax(x)), (iii) maximizing the first natural frequency of vibration f1(x), and (iv) maximizing the
critical load factor for global stability (λcr(x)). The formulation of this multi-objective problem is detailed in eq.
(1), where xL and xU represent the lower and upper bounds of the design variables, respectively.

min W (x) and min δmax(x) and max f1(x) max λcr(x)

s.t. structural constraints

xL ≤ x ≤ xU

(1)

The candidate vector of design variables is partitioned into five subsets identified by integer indexes, which
specify configurations for the bracing system, orientations of column principal axis of inertia, and commercial
steel profiles used for columns, beams, and bracer elements. The search space for these subsets includes 29 rolled
profiles for columns and 56 for beams. Figure 1 provides a visual representation that links the design variables of
the candidate vector.

The problem includes several constraints encompassing inter-story drift, Load and Resistance Factor Design
(LRFD) interaction equations considering combined axial force and bending moments, LRFD shearing equations,
and geometric constraints associated with beam-to-column and column-to-column connections. The maximum
allowable inter-story drift is governed by d̄ = h/500, where h denotes the height between consecutive floors (eq.
2)). This constraint adheres to the guidelines specified in both the Brazilian code ABNT [7] and the American
code ANSI [8].

dmax(x)

d̄
− 1 ≤ 0 (2)

The frame elements are required to satisfy the Load and Resistance Factor Design (LRFD) equations for
combined flexural and bending effects:
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and the maximum allowable shearing equation:

Vr

Vc
− 1 ≤ 0 (4)
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... ... ...
Column

Orientation
Columns Beams Bracers

1-Nbs 0-1 0-1 0-1 1-29 1-29 1-29 1-56 1-56 1-56 1-56

x

...

Nbs-1 Nbs1 2

0 1

Profile m (kg) d(mm) bf(mm) tw(mm) tf(mm) h (mm)

W 150x22.5 22.5 152 152 5.8 6.6 139

W 150x29.8 29.8 157 153 6.6 9.3 138

W 150x37.1 37.1 162 154 8.1 11.6 139

W 360x110 110 360 256 11.4 19.9 320

W 360x122 122 363 257 13 21.7 320

1
2
3

28
29

...

...

Profile m (kg) d(mm) bf(mm) tw(mm) tf(mm) h (mm)

W 150x13 13 148 100 4.3 4.9 138

W 150x18 18 153 102 5.8 7.1 139

W 150x24 24 160 102 6.6 10.3 139

W 610x113 113 608 228 11.2 17.3 573

W 610x125 125 612 229 11.9 19.6 573

1
2
3...

55
56

...x

Bracing System
Configuration

Figure 1. Candidate vector for a general problem, which includes the bracing system configuration, column orien-
tation, and commercial profiles variables.

The required axial strength (Pr) and flexural strengths about the major (Mrx) and minor axes (Mry) are
compared with the available strengths of the members, denoted as Pc, Mcx, and Mcy , respectively. Furthermore,
the allowable shearing strength equation considers the required shearing strength (Vr) and the available shearing
strength (Vc).

The determination of the allowable strengths follows the approximate second-order analysis by amplifying
the required strengths indicated by two first-order elastic analyses:

Mr = B1Mnt +B2Mlt (5)

Pr = Pnt +B2Plt (6)

where:
• B1 is the multiplier to account for P − δ effects;
• B2 is the multiplier to account for P −∆ effects;
• Mlt is the first-order moment due to lateral translation of the structure only;
• Mnt is the first-order moment with the structure restrained against lateral translation;
• Plt is the first-order axial force due to lateral translation of the structure only;
• Pnt is the first-order axial force with the structure restrained against lateral translation;
• Mr is the required second-order flexural strength;
This methodology is consistent with both the Brazilian code ABNT [7] and the American code ANSI [8].
The problem formulation integrates geometric constraints crucial for addressing structural considerations,

particularly concerning connections between beams and columns, as well as between columns themselves. Con-
straints at beam-column connections prohibit attaching a beam with a flange wider than either the height of the
column’s web or its flange. Similarly, constraints at column-to-column connections ensure that profiles with greater
depth or mass cannot be fitted over profiles with smaller dimensions. The geometric constraints are defined math-
ematically in equation (7). Here, hwi, bfi, and di represent the height of the web, the width of the flange, and
the depth of the i-th member, respectively. Similarly, bfk and bfj denote the flange widths of the k-th and j-th
members, while dn indicates the depth of the n-th member. Additionally, mi and mn denote the linear mass of the
i-th and n-th profiles, respectively. Finally, Nc signifies the total number of columns in the structure.

di
dn

− 1 ≤ 0;
mi

mn
− 1 ≤ 0;

bfk
hwi

− 1 ≤ 0;
bfj
bfi

− 1 ≤ 0 i = 1, Nc (7)
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4 Numerical application

The model to be optimized is depicted in Figure 2 and consists of a spatial frame with 16 floors and 16 bays,
each with a height of 3.5 m. This model is inspired by a steel frame studied by Hasançebi [9]. Figure 2 also
illustrates the available bracing configurations for the project.

(a) (b) (c)

(d) (e) (f)
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Figure 2. Spatial steel frame of 16 stories and 16 bays and its bracing system configurations. (a) 3D view; (b) “D”;
(c) “Z”; (d) “V”; (e) “IV”; (f) “X”; (g) Plan view with columns’ groups.

Wind loads are detailed in Table 1, and the gravitational loads acting on the beams are 7.85 kN/m for external
beams and 22.21 kN/m for internal beams. The computational efforts required are determined using Equations (5)
and (6).

Table 1. Nodal wind loads.

Story Height (m) C.N. (kN) M.N.(kN) Story Height (m) C.N. (kN) M.N.(kN)
1 3,5 5,52 11,04 9 31,5 8,55 17,10
2 7,0 5,88 11,76 10 35,0 8,77 17,54
3 10,5 6,52 13,04 11 38,5 8,98 17,96
4 14,0 7,00 14,00 12 42,0 9,17 18,34
5 17,5 7,40 14,80 13 45,5 9,35 18,70
6 21,0 7,74 15,48 14 49,0 9,52 19,04
7 24,5 8,04 16,08 15 52,5 9,68 19,36
8 28,0 8,31 16,62 16 56,0 4,92 9,84

Six solutions are extracted using the Multi Tournament Decision (MTD) method, as described in the Materials
and Methods section, with each extraction representing a specific scenario of weight combinations for the objective
functions. These scenarios are as follows:

• Scenario 1: The weighting of W (x) is w1 = 1.0, of δmax(x) is w2 = 0, of f1(x) is w3 = 0, and of λcrt(x)
is w4 = 0;

• Scenario 2: The weighting of W (x) is w1 = 0, of δmax(x) is w2 = 1.0, of f1(x) is w3 = 0, and of λcrt(x)
is w4 = 0;

• Scenario 3: The weighting of W (x) is w1 = 0, of δmax(x) is w2 = 0, of f1(x) is w3 = 1.0, and of λcrt(x)
is w4 = 0;

• Scenario 4: The weighting of W (x) is w1 = 0, of δmax(x) is w2 = 0, of f1(x) is w3 = 0, and of λcrt(x) is
w4 = 1.0;

• Scenario 5: The weighting of W (x) is w1 = 0.25, of δmax(x) is w2 = 0.25, of f1(x) is w3 = 0.25, and of
λcrt(x) is w4 = 0.25;
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• Scenario 6: The weighting of W (x) is w1 = 0.7, of δmax(x) is w2 = 0.1, of f1(x) is w3 = 0.1, and of
λcrt(x) is w4 = 0.1;

Five independent runs are performed for a population of 50 candidate vectors and 200 generations. This
process is carried out for the SHAMODE, SHAMODE-WO, and MMIPDE algorithms. The Pareto front obtained
with the six extracted scenarios highlighted is illustrated in Figure 3. The extracted solutions are detailed in Table
2 and depicted in Figure 4.

1
6

4

2
5

3
Figure 3. Pareto front and extracted solutions represented in normalized parallel coordinates.
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Figure 4. Extracted solutions columns orientations and bracing systems.
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Table 2. Detailed results for the extracted solutions from the Pareto front.

Scenario 1 2 3 4 5 6
Importance [1 0 0 0] [0 1 0 0] [0 0 1 0] [0 0 0 1] [.25 .25 .25 .25 ] [.7 .1 .1 .1]
Bracing System IV X X X X IV

Group (Stories) W Profiles (Column Orientation)
CC (1-4) 360x91 360X122 360X122 360X122 310x117 360x110
CC (5-8) 250x80 360X122 360X122 360X122 310x117 250x85
CC (9-12) 200x52 360X122 360X122 360X122 310x117 200x52
CC (13-16) 200x35.9 310x79 360X122 360X122 310x117 200x35.9
OC1 (1-4) 360x91 360X122 360X122 360X122 310x117 360x110
OC1 (5-8) 310x97 360X122 360X122 360X122 310x117 310x110
OC1 (9-12) 250x62 360X122 360X122 360X122 310x117 250x80
OC1 (13-16) 200x46.1 360X122 360X79 360X122 310x117 200x41.7
OC2 (1-4) 360x122 360X122 360x122 360x122 310x117 360x122
OC2 (5-8) 360x101 360X122 360X122 360X122 310x117 360x101
OC2 (9-12) 360x101 360X122 360X122 360X122 310x117 360x91
OC2 (13-16) 360x91 360X122 360X122 360X122 310x117 360x91
IC1 (1-4) 310x117 360X122 360x122 360X122 310x117 310x117
IC1 (5-8) 310x97 360X122 360X122 360X122 310x117 310x107
IC1 (9-12) 310x97 360X122 360X122 360X122 310x117 310x97
IC1 (13-16) 200x59 360X122 360X122 250x80 310x117 200x53
IC2 (1-4) 250x89 360X122 360X122 360x122 310x117 250x101
IC2 (5-8) 250x85 360X122 360X122 360X122 310x117 250x85
IC2 (9-12) 250x73 360X122 360X122 360X122 310x117 250x73
IC2 (13-16) 200x53 360X122 360X122 360X122 310x110 200x53
IC3 (1-4) 310x125 360X122 360X122 360x122 310x117 310x117
IC3 (5-8) 250x101 360X122 360X122 360X122 310x117 250x89
IC3 (9-12) 250x73 360X122 360X122 360X122 310x117 250x62
IC3 (13-16) 200x35.9 360X101 360X122 360X122 310x117 200x35.9
OB (1-4) 310x28.3 610x125 610X113 610X125 530x66 310x28.3
OB (5-8) 530x74 410x75 610X125 610X125 530x66 530x72
OB (9-12) 200x15 610x125 610X125 610X125 530x72 200x22.5
OB (13-16) 310x21 610x113 610X125 610X125 360x64 310x38.7
IB (1-4) 310x21 610x113 610X125 610X125 530x72 310x23.8
IB (5-8) 410x60 610x125 610X125 610X125 530x92 410x53
IB (9-12) 200x26.6 610x101 610X125 610X125 530x72 200x22.5
IB (13-16) 250x28.4 410x53 610X125 410x67 530x72 250x32.7
BC (1-16) 410x38.8 610x125 610X125 610X125 530x85 410x46.1

Objective Functions and Constraints
LRFDmax(x) 0.99 0.62 0.63 0.69 0.68 0.85
Vmax(x) 0.38 0.15 0.06 0.13 0.10 0.35
dmax(x) (mm) 2.1 1.0 1.0 1.0 1.2 1.9
δmax(x) (mm) 28.9 13.8 13.9 13.9 17.1 25.9
f1(x) (Hz) 0.46 1.13 1.32 1.21 1.07 0.66
λcrt(x) 1.04 2.51 1.88 3.81 1.94 1.09
W (x) (kg) 285022 695269 760631 739056 529834 303142
Algorithm SHAMODE MMIPDE MMIPDE MMIPDE MMIPDE SHAMODE
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5 Conclusions

A crucial analysis in this numerical application involves observing the low critical load factors, which signify
substantial stresses nearing global instability within the structure. This phenomenon predominantly stems from the
considerable height of the building, resulting in substantial loads accumulating on the lower columns. Furthermore,
incorporating second-order effects via stress amplification exacerbates stresses on structural components, thereby
magnifying critical load factors.

In contexts involving buildings taller than those considered in this study, it becomes crucial to broaden the
search space to include welded steel profiles, given the limitations associated with rolled profiles dimensions.
Additionally, taller buildings often exhibit considerably lower vibration frequencies due to their higher flexibility
and concentration of nodal masses at slab panel intersections, with observed values ranging between 0.46 Hz and
1.32 Hz. Adopting welded profiles and incorporating additional bracing subsystems, such as shear walls or rigid
cores, emerge as viable strategies to mitigate these challenges.

Regarding the specified objectives, notable attention is directed toward solutions presented by the first four
scenarios, each demonstrating superior performance in a primary objective at the expense of others. The lightest
solution among the Pareto set (scenario 1) weighs W (x) = 285, 022 kg, associated with an “IV” shaped bracing
system. Solutions corresponding to scenarios 2, 3, and 4 achieve optimal results in maximum displacement at the
top δ(x) = 13.8 mm, vibration frequency f1(x) = 1.32 Hz, and critical load factor λcrt(x) = 3.81, respectively,
all with an “X”-shaped bracing system.

Future research directions may involve exploring proposed optimization methodologies across various struc-
tural types and design variables and exploring alternative objective functions. Moreover, applying these techniques
in real-world projects can offer insights into their effectiveness and applicability. Future efforts could also en-
compass advanced analysis methods such as iterative, incremental approaches, consideration of environmental and
sustainable factors in structural optimization, and detailed examination of solutions derived through specialized
software for steel structures. Additionally, integrating machine learning methods to minimize computational costs
represents a promising avenue for future research.
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