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Abstract. Prestressing has become increasingly attractive as it allows for larger spans, greater architectural 

flexibility, agility in execution and durability. All of these advantages are capable of making prestressed concrete 

structures more economical solutions specially when associated with an efficient scaffolding system and 

formwork. The designer can appropriately define the dimensions of the beams and slabs, as well as parameters 

such as the quantity and layout of tendons by trial based on experience. However, numerical optimization 

techniques are tools recognized as appropriate for the search for a structural solution, where design parameters 

can be determined such that the solution minimizes, for example, cost, which takes into account the cost of 

materials, the volume of concrete, the weight of tendons, rebar reinforcement, and labor productivity, at the same 

time constraint functions related to, e.g., serviceability and ultimate conditions are verified. Given the discrete 

nature of some variables, Genetic Algorithms (GAs) have been widely used. GAs have control parameters and 

operators that are, in general, problem dependent, requiring calibrations in each case. The objective of this work 

is to review some GA models investigating alternative crossover operators, proposing a modified one thus 

aiming at the efficiency of the algorithm for prestressed elements, using a prestressed beam as a case study.  

Keywords: optimization, prestressed beams, genetic algorithms. 

1  Introduction 

Prestressed concrete is made up of concrete, prestressed tendons and reinforcement bars. The prestressing 

mechanism consists of pulling the tendons using hydraulic jack, until the force determined in the project is 

reached. At the end of the process, the tendons are anchored and tend to return to their relaxed state, causing 

internal tensions to arise in the concrete structures, thus, the concrete will be working in its best state, 

compression. Therefore, prestressing allows the structures to reach greater spans and be slender. 

For prestressed concrete structures, unlike reinforced concrete, serviceability limit state (SLS) come to the 

fore, given that service checks are decisive in the design of structural elements. Thus, based on the designer's 

experience, an initial estimate of the dimensions and number of tendons is made (which can be calculated based 

on the load to be balanced), and then it is checked whether all service limits are satisfied, if not are, the section is 

resized and verified again. Therefore, it is sized by the SLS, related to user comfort and durability and, 

subsequently, the ultimate limit states (ULS) are verified, which are related to collapse and structural ruin. It is 

also in the ULS that it is checked whether rebars should be added. Therefore, optimization can then be applied to 

prestressed structures design, making the structural design process more effective and efficient, as there will be 

no need for resizing. 

Since traditional nonlinear programming techniques are ineffective for discrete variables and may converge 

to local optima, genetic algorithms (GAs), based on Charles Darwin's evolutionary theory, become an excellent 

alternative for solving such problems, given that GAs can find the global optimal solution with high probability 
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[1]. Some variants of GAs, developed for problems with real variables, have been proposed in the literature, but 

there are still few applications to problems of prestressed concrete structure design. There is, therefore, a demand 

for verifications of these variants applied to these types of structural problems. It is worth pointing out that the 

evolutionary algorithm operators can affect its exploitation aspect, where better solutions are constructed based 

on the current knowledge of the search space, or exploration aspect, where new regions of the search space are 

investigated [2]. 

Thus, the objective of this work is to apply alternative crossover operators and propose a modified one for 

real encoded GAs (for discrete and continuous search space) to the design of a prestressed beam, optimizing its 

cost, where the design variables are the width and depth of cross section and the amount of unbonded 

prestressing tendons. All analyzes are implemented in the GA of the BIOS program - developed at the 

Computational Mechanics and Visualization Laboratory (LMCV) of Universidade Federal do Ceará (UFC) – 

developed with C++ programming language. 

2  Analysis 

The following formulations are developed considering a simply supported beam and limit state 

verifications are applied at the central section. 

 

2.1 Equivalent prestressing load 

To modelling the effect the prestressing tendon on a concrete element, the Load Balancing Method, 

proposed by Lin [3], can be used, which consists of replacing the loads coming from the tendon with a uniformly 

distributed vertical load, assuming a parabolic shape for the tendon. The equivalent load formula is 

 𝑞𝑒 =
8.𝑃.𝑒𝑝

𝐿2  (1) 

where qe is the equivalent prestress load, P is the constant prestressing force along the tendon, ep is the 

distance from the tendon to the center of gravity of the section (CG) and L is the length of the span. 

 

2.2 Serviceability limit state verification (SLS) 

To verify the serviceability limit state of crack formation, the frequent load combination (FLC) must be 

applied, in accordance with item 8.2.5 of NBR 6118 [4], taking as tension inferior (σi,lim(flc)) and compression 

superior (σs,lim(flc)) limits values: 

 {
𝜎𝑖,𝑙𝑖𝑚(𝑓𝑙𝑐) = 0.7 · 𝛼 · 𝑓𝑐𝑡𝑚

𝜎𝑠,𝑙𝑖𝑚(𝑓𝑙𝑐) = − 0.6 · (𝑓𝑐𝑘)
 (2) 

where, for concretes with fck ≤ 50 MPa, 𝑓𝑐𝑡𝑚 = 0.3 · ( √𝑓𝑐𝑘𝑗
3 ) and the coefficient α takes on different values 

depending on the section of the concrete element, being 1.5 for rectangular sections. 

Then, for the lower part (σi(flc)) and top of the section most requested (σs(flc)), the calculation of the stress in 

this combination are  

 {
𝜎𝑖(𝑓𝑙𝑐) = − (

𝑃∞

𝐴𝑐
) − (

𝑀𝑝

𝑤
) + (

𝑀𝑔

𝑤
) + 

1
· (

𝑀𝑞

𝑤
)

𝜎𝑠(𝑓𝑙𝑐) = − (
𝑃∞ 

𝐴𝑐
) + (

𝑀𝑝

𝑤
) − (

𝑀𝑔

𝑤
) − 

1
· (

𝑀𝑞

𝑤
)
 (3) 

where: P and Mp are, respectively, the prestressing force and the resulting isostatic moment due to 

prestressing considering the losses in infinite time; Mg is the moment due to permanent loading and self-weight; 

Mq is the moment due to live loads; 1 is the load factor of the accidental load to FLC; Ac is the area and w is the 

resistance modulus of the cross section. 

For the decompression limit state, the quasi-permanent combination (QPC) must be applied and, according 

to NBR 6118 [4], the entire section analyzed in this state must be completely compressed. The acting stress on 

the lower (σi(qpc)) and upper (σs(qpc)) surfaces of the section are given by: 
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 {
𝜎𝑖(𝑞𝑝𝑐) = − (

𝑃∞ 

𝐴𝑐
) − (

𝑀𝑝

𝑤
) + (

𝑀𝑔

𝑤
) + 

2
· (

𝑀𝑞

𝑤
)

𝜎𝑠(𝑞𝑝𝑐) = − (
𝑃∞

𝐴𝑐
) + (

𝑀𝑝

𝑤
) − (

𝑀𝑔

𝑤
) − 

2
· (

𝑀𝑞

𝑤
)

 (4) 

where 2 is the load factor of the accidental load to QPC. 

The compressive stress limit in concrete, both in the lower and upper fibers of the section, in this 

combination is given by: 

 𝜎𝑖,𝑙𝑖𝑚(𝑞𝑝𝑐) = 𝜎𝑠,𝑙𝑖𝑚(𝑞𝑝𝑐) = − 0.45 · (𝑓𝑐𝑘) (5) 

For the limit state of excessive deformations, ABNT NBR 6118 [4] establishes the limit displacements 

referring to the deflections in the structures, with sensory acceptability due to visual limitation being considered 

in the relevant work due to the visual limitation, which the limit displacement is L/250, with L being the span of 

the structural element. 

In prestressed concrete structural elements, it is sufficient to consider the integral stiffness of the cross-

section to calculate the immediate deflection [4]. To consider deformation over time, simply multiply the 

permanent portion of the immediate deflection by (1+ ), where  is the creep coefficient obtained in ABNT 

NBR 6118 [4]. 

 

2.3 Ultimate limit state (ULS) verification  

ABNT NBR 6118 [4] specifies stress limits during prestressing, immediately transferring loads, which are 

presented below. 

- The maximum compressive stress during prestressing in the concrete section, obtained through factored 

loads, must not exceed 70% characteristic resistance (fckj) predicted at the fictitious age j (in days), clearly 

specified in the project. Eq.6 explains the procedure for calculating the limit reference and eq.7 presents the 

calculation of the tension at the bottom of the section. 

 𝜎𝑖,𝑙𝑖𝑚(𝑎𝑐𝑡) = − 0.7 · (𝑓𝑐𝑘𝑗) (6) 

 𝜎𝑖(𝑎𝑐𝑡) = −𝛾𝑝 · (
𝑃0

𝐴𝑐
) − 𝛾𝑝 · (

𝑀𝑝0

𝑤
) + 𝛾𝑓 · (

𝑀𝑔0

𝑤
) (7) 

where: P0 e Mp0 respectively the prestressing force and the resulting isostatic moment due to prestressing 

considering the immediate losses; Mg0 the moment due to the self-weight of the part; p (1.1 if the prestressing is 

unfavorable and 0.9 otherwise) and f (1.0) are the load weights for post-tension prestressing and self-weight, 

respectively. 

- The maximum tensile stress of the concrete, shown in eq.8, must not exceed the tension strength fctm 

corresponding to the value fckj specified. 

 𝜎𝑠,𝑙𝑖𝑚(𝑎𝑐𝑡) = 1.2 · (𝑓𝑐𝑡𝑚) (8) 

To calculate the tension in the upper part of the section: 

 𝜎𝑠(𝑎𝑐𝑡) = −𝛾𝑝 · (
𝑃0

𝐴𝑐
) + 𝛾𝑝 · (

𝑀𝑝0

𝑤
) − 𝛾𝑓 · (

𝑀𝑔0

𝑤
) (9) 

 

2.4 Calculation of rebar reinforcement 

The rebar reinforcement is evaluated by means of the equilibrium equation between the requesting moment 

MSd and resisting moment MRd.. The requesting bending moment is defined as 

 𝑀𝑆𝑑 = 𝛾𝑔 · 𝑀𝑔 + 𝛾𝑞 · 𝑀𝑞 (10) 

Where Mg is the resulting moment due to the permanent load and self-weight, Mq is the resultant moment due to 

the accidental load, g and q are the load factors with values of 1.4 for both for normal combination. 
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The requesting moment is then equated with the resisting moment. Then for an initial case, in which only 

the tendon reinforcement was defined, that is, there is only concrete and tendons, according to the formulations 

developed by Ferreira [5], the positive rebar reinforcement (As) can be calculated subtracting from the required 

prestressing reinforcement (Apn) the effective prestressing reinforcement (Ap), previously defined, doing 

 𝐴𝑠 = (𝐴𝑝𝑛 − 𝐴𝑝) · (
𝜎𝑝𝑑

𝑓𝑦𝑑
) (11) 

where fyd represents the calculation resistance to yielding of passive reinforcement steel, being equal to 435 MPa 

for CA-50 steel and σpd is the total tension in the active reinforcement, which is the sum of the stress due to 

prestressing and the increase in stress in the reinforcement tendons calculated by ABNT NBR 6118 [4]. The 

minimum reinforcement of the section is also calculated, adopting the largest value between the steel area 

calculated by eq. 11 and the minimum steel area. 

As for the negative rebar (A’s), if necessary, do: 

 𝐴′𝑠 =
𝑀𝑅𝑑2

[𝑓𝑦𝑑·(𝑑𝑝−𝑑′)]
 (12) 

Where MRd2 is the resistant moment referring to the compressed region, d' represents the distance from the 

CG of the rebars reinforcement in the compressed region to the most distant upper point of the section and dp the 

distance from the CG of the prestressing reinforcement to the most distant upper point of the section. 

3  Optimization Model 

3.1 Formulation of the optimization model 

The optimization model of the related work aims to minimize the total unit cost of materials for the 

production of a prestressed concrete beam with unbonded tendons, with the objective function given by: 

 𝐶𝑇𝑂𝑇 = 𝐶𝑐. 𝑉𝑐 + 𝐶𝑝. 𝑚𝑝 + 𝐶𝑠. 𝑚𝑠 (13) 

where CTOT (R$) is the total cost materials, Cc (R$/m³) is the concrete cost, Vc (m³) is the concrete volume, 

Cp (R$/kg) is the tendons cost, mp (kg) is the tendons mass, Cs (R$/kg) is the rebar cost and ms (kg) is its mass. 

The design variables are the section width (bw) and the section depth (h), which are continuous variables, 

and the number of tendons (n), which is a discrete variable. 9 design constraints are considered due to the 

restrictions during prestressing, decompression limit state, crack formation limit state and excessive deformation 

limit state, and are summarized in Tab. 1. Note that the compression is considered negative and tension positive 

in these expressions. Moreover, the side constraints are satisfied implicitly by the GA algorithm used. 

 

Table 1. Model Constraints 

Constraints Function Normalized constraints 
 
 

Restrictions during prestressing 

Maximum tension σs(act) ≤ σs,lim (act) [σs(act) / σs,lim(act)] - 1 ≤ 0 

Maximum compression σi(act)  σi,lim (act) [σi(act) / σi,lim(act)] -1 ≤ 0 

Decompression limit state 

Maximum tension on the lower fiber σi(qpc) ≤ 0 {[σi(qpc) + fck ] / fck}-1 ≤ 0 

Maximum compression in the lower fiber σi(qpc)  σi,lim (qpc) [σi(qpc) / σi,lim (qpc)] - 1 ≤ 0 

Maximum tension on the upper fiber σs(qpc) ≤ 0 {[σs(qpc) + fck ] / fck}-1 ≤ 0 

Maximum compression in the upper fiber σs(qpc)  σs,lim (qpc) [σs(qpc) / σs,lim (qpc)] - 1 ≤ 0 

Crack formation limit state 

Maximum tension in frequent combination σi(flc) ≤ σi,lim (flc) [σi(flc) / σi,lim (flc)] - 1 ≤ 0 

Maximum compression in frequent combination σs(flc)  σs,lim (flc) [σs(flc) / σs,lim (flc)] - 1 ≤ 0 

Excessive deformation limit state 

Maximum vertical displacement δ ≤ δmax [δ / δmax] - 1 ≤ 0 
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3.2 Crossover operators variants in Genetic Algorithms 

In Genetic Algorithms, a population of individuals (design variables) evolves through generations, 

improving its fitness. In this process, in each generation, a set of individuals are selected to process crossover, 

where current population is combined to find new solutions. Mutation operator is also applied. Since this work 

focus on the crossover operator, the details of the genetic algorithm used are omitted, but are available in the 

literature [6]. 

In the following, various crossover operators are discussed. The Arithmetic crossover consists of carrying 

out an arithmetic operation to obtain the new generation. Therefore, two individuals x1 e x2 are presented in the 

form: 

                                                         𝐱1 = [𝑥1
1, 𝑥 2

1 , … , 𝑥𝑛
1 ] ;   𝐱2 = [𝑥1

2, 𝑥 2
2, … , 𝑥𝑛

2]                                            (14) 

The result of the arithmetic crossover, that is, the vector of descendants y = [y1, y2, ... , yn], with α varying 

randomly from 0 to 1, is expressed as: 

                  𝐲 =  𝛼 · 𝐱1 + (1 −  𝛼) · 𝐱2                                                              (15) 

To generate two offspring from two parents, β = (1 − α) is used for the second descendent. 

The geometric crossover, according to Katoch [7], being parents x1 e x2, with δ varying randomly from 0 to 

1, the descendants y1 e y2 can be defined as: 

                            𝑦1 = 𝑥1
𝛿 · 𝑥2

(1−𝜹)
 ;  𝑦2 = 𝑥2

𝛿 · 𝑥1
(1−𝛿)

                                                    (16) 

According to Yu [8], Simulated Binary Crossover (SBX) attempts to reproduce characteristics of the binary 

crossover in a real code, making the descendants of the single-point crossover have the same centroid as the 

parents (x1 e x2). Applying the centroid idea to offspring genes (y1 e y2): 

                       𝑦1 = 0.5 · (𝑥1 + 𝑥2) + 0.5 · 𝛽 · (𝑥1 − 𝑥2)  ;   𝑦2 = 0.5 · (𝑥1 + 𝑥2) + 0.5 · 𝛽 · (𝑥2 − 𝑥1)            (17) 

Wherein the propagation factor β is generated from a uniformly distributed random number u that varies 

from 0 to 1, with n being a control parameter previously defined by the user as shown in the equations below. 

                      𝛽 = {
            (2𝑢)

1

𝑛+1            →  𝑢 ≤ 0,5  

       2 · (1 − 𝑢)−
1

𝑛+1     →  𝑢 > 0,5   
                                                          (18) 

Standard arithmetic crossing is a linear interpolation of two individuals, so it only produces offspring on the 

line connecting two parents. Blend Crossover (BLX) expands the arithmetic crossover range [7]. Thus, for genes 

x1 and x2, supposing that x1 < x2, the expansion is: 

                          𝑦1 = 𝑟𝑎𝑛𝑑{[𝑥1 − 𝛼 · (𝑥2 − 𝑥1)], [𝑥2 + 𝛼 · (𝑥2 − 𝑥1)]}                                     (19) 

Where rand(c1,c2) is a function to generate a uniformly distributed random number in the range (c1,c2), α is 

a user-defined parameter that controls the expansion of the linear interpolation. Therefore, it is normally written 

BLX-α, making the value of α clear [8]. The search interval for this method, as in the SBX, allows the 

exploration and exploration regions to be investigated at the same time. 

In this work, a modified version of the Blend crossover is proposed (Mod Blend). Here, the expansion (c1 e 

c2) of x1 and x2 are weighted using the fitness function of the parents: 

                                  𝑐1 = 𝑥1 − (
𝑓1

𝑓1+𝑓2
) ·  𝛼 · (𝑥2 − 𝑥1 )  ;  𝑐2 = 𝑥1 + (

𝑓1

𝑓1+𝑓2
) ·  𝛼 · (𝑥2 − 𝑥1 )                           (20) 

where f1 and f2 are the fitness function of the parents x1 and x2, respectively. This modification aims to prioritize 

the chromosome of the best individual in the crossover process. A random number is then generated in a way 

similar to eq.19. 
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4  Numerical Results 

The example to be analyzed was taken from Chust's book [9] (page 341). The structural element is a bi-

supported beam (Fig.2) with width bw (with a range of 0.14m to 0.7m) and depth h (with a range of 0.2m to 

1.5m) to be determined by optimization, with fck = 40MPa and fckj = 20MPa, span of 14.75 m. The tendons are 

CP RB 190 unbonded with posterior prestressing with limits on the number of tendons between 1 and 30. The 

loadings are permanent load moment of 30.99 kN.m, accidental load moment of 1552 kN.m with weights of 1 = 

0.4 and 2 = 0.3 and total requesting moment of 4225 kN.m. The coverings are 5 cm for rebars and 5.5 cm for 

tendons, totaling a maximum distance from the CG from the tendon to the bottom edge of 6 cm.  

                                     
                       Figure 1. Prestressed beam supported at both ends 

 

The optimization algorithm parameters used in all cases are: 20 optimizations, population size = 150, 

maximum number of generations = 100, migration rate = 10%, Fitness Proportional method for selection, 

crossover rate = 90%, penalty method “Deb 2000”, constraint tolerance of 10-5, mutation rate = 0%. The types of 

methods used are Nonlinear Analysis (Excel) and Genetic Algorithm with Arithmetic, Geometric, SBX, Blend 

crossover and Mod Blend. The cost data was taken in July 2024 from SEINFRA (Secretaria da Infraestrutura do 

Ceará): concrete=647.01 R$/m³, tendons=15.12 R$/kg, rebars=13.46 R$/kg. To study the SBX crossover 

method, the parameter u was varied. For the Blend crossover method and Mod Blend, the parameter α was 

varied within its tolerance.  

The success rate can be used as a way to check the performance of the algorithm, being defined as the 

number of optimizations that achieved the lowest value for the problem divided by the total number of 

optimizations. Below in Tab.2 are the results of the optimizations for each method used and the comparison 

between the crossovers used is in Fig.2. 

Table 2. Results for method 

   Reference / Method                   bw (m)         h (m)     Tendons  Objtictive function value (R$) Success Rate 

Chust [9] 0.7000 1.5000 22 17365.3    - 

Nonlinear Analysis (Excel) 0.6196 1.4976 21 15838.1    - 

Arithmetic Crossover (GA) 0.6641 1.4389 22 16662.7 5% 

Geometric Crossover (GA) 0.6956 1.4179 23 16757.3 5% 

SBX - n=0.5 (GA) 0.6065 1.4927 21 15786.1 90% 

Blend Crossover - α=0.9 (GA) 0.6065 1.4927 21 15786.1 90% 

Mod Blend - α=0.9 (GA) 0.6065 1.4927 21 15786.1 95% 
 

 
Figure 2. Comparison between the crossover operators 
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From the values found for the objective function, the most efficient methods were Mod Blend Crossover 

(α=0.9) with a success rate of 95%, Blend Crossover (α=0.9) and SBX (n=0.5) with a success rate of 90%, all 

with a reduction of cost of 9% in relation to the initial value obtained by Chust [9]. Furthermore, it can be seen 

from Fig.2 that the SBX and Blend crossovers converges more quickly, reaching lower values for the cost 

function in relation to the Arithmetic and Geometric crossovers, assuming therefore that the global minimum 

may have been reached. It can also be observed that the variable that presented the greatest reduction with the 

optimization was the width of the section (bw), considering that the depth (h) and number of tendons contribute 

more significantly to the resistant moment of the prestressed concrete section. 

Regarding the SBX parameter n, it is clear that for n<1 the success rate is between 75% and 90%, however, 

for values greater than 1 the success rate begins to decrease. As for Blend and Mod Blend, for α from 0.8 to 1 the 

success rate normally remains between 80% and 95%. The processing time of each optimization were around 3 

seconds for each method. The number of generations until convergence is 32 for Arithmetic, 35 for Geometric, 

79 for SBX, 49 for Blend, and for Mod Blend around 53 generations were necessary. 

All restrictions were satisfied for all methods, the most decisive in optimization (close to zero) being the 

maximum tension during prestressing σs(act), the maximum tension in the lower fiber in the quasi-permanent 

combination σi(qpc). Furthermore, the variable h reached values very close to the limit of the established range, 

indicating that the greater the depth of the beam, the more resistant the section. 

5  Conclusions 

From the results found for the optimizations carried out, it was found that it was possible to reduce the cost 

of a prestressed beam by up to 9%, mainly reducing the width of the section, which in cases of transfer beams, 

for example, this is a significant reduction, considering that this type of beam is expensive for a project, in 

addition to the fact that the reductions in section dimensions are favorable for architecture. 

Regarding the crossover operators analyzed, the most efficient operators were BLX, Blend and Mod Blend 

crossovers, since their success rates were higher, which can be attributed to the investigation space, which is 

formed by exploration and exploitation regions. 

In short, using BLX, Blend and Mod Blend crossovers operators in optimization, it was possible to 

calculate the dimensions of prestressed element so that all restrictions were satisfied, with a high success rate and 

in a reduced time compared to resizing in a conventional structural modeling program. 
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