
Multi-objective structural optimization of a space truss considering geo-
metric nonlinearity and global stability aspects

João Marcos de Paula Vieira1, Afonso Celso de Castro Lemonge2, Patrícia Habib Hallak2, Érica da Costa Reis
Carvalho1

1Graduate Program in Computational Modeling, Federal University of Juiz de Fora
Rua José Lourenço Kelmer, s/n, Campus Universitário Bairro São Pedro, 36036-900, Juiz de Fora, MG, Brasil
joaomarcos.vieira@estudante.ufjf.br, ericacrcarvalho@gmail.com
2Department of Applied and Computational Mechanics, School of Engineering, Federal University of Juiz de Fora
Rua José Lourenço Kelmer, s/n, Campus Universitário Bairro São Pedro, 36036-900, Juiz de Fora, MG, Brasil
afonso.lemonge@ufjf.br, patricia.hallak@ufjf.br

Abstract. The literature has broadly discussed developing and solving multi-objective structural optimization
problems (MOSOPs) with two objectives. The conflicting objective functions commonly addressed are minimiz-
ing the structure’s weight and the maximum displacement. In this paper, the two objective functions considered
are minimizing the weight and maximizing the first critical load factor related to the structure’s global stability.
The constraints are related to the maximum stresses in the bars, the maximum allowed nodal displacements, and
the minimum value determined for the first natural frequency of vibration. The analyzed structure is a 25-bar truss.
When defining the displacements and deformed configurations of the structure, a geometrically nonlinear analysis
is applied using the cylindrical arc-length method. This analysis allows the designer to obtain more accurate values
regarding the objective functions and constraints. Three evolutionary algorithms are applied to solve the proposed
MOSOP, comparing their performances and providing solutions. The Pareto front obtained in the proposed prob-
lem is presented, as it is possible to observe, for example, how the growth of the truss’ weight causes increases
in the first critical load factor. Finally, optimized solutions are extracted from the Pareto front according to the
decision-maker’s preferences.
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1 Introduction

In a real-world structural optimization problem, a designer or decision-maker (DM) wants to find a structural
configuration that satisfies the requirements imposed by a standard or a usually recommended practice. Most of
these problems aim to minimize the structure’s weight and, consequently, the material consumption and execution
costs. The literature also widely discusses problems with two or more conflicting objective functions, known as
multi-objective structural optimization problems (MOSOPs).

This paper proposes and solves a MOSOP with two objective functions. In addition to minimizing the weight,
the other objective is maximizing the first critical load factor related to global stability, aiming to ensure the
structure’s integrity according to the applied load. The constraints are the allowable stresses on the bars, the
maximum nodal displacements, and the minimum value defined for the first natural frequency of vibration.

The structure under study is a 25-bar space truss, with the cross-sectional area of these bars as the sizing
design variables. When defining the displacements and the deformed configurations, a geometrically nonlinear
analysis is applied using the cylindrical arc-length method. This analysis allows the decision-maker to obtain more
realistic and accurate values regarding the objective functions and constraints.

Three differential evolution algorithms are applied to solve the MOSOP, and the Pareto fronts obtained are
presented. Afterward, a multi-criteria decision-making (MCM) is applied to extract desired solutions from the
Pareto fronts, according to the DM preferences. Therefore, this paper’s main objective is to apply the proposed
objective functions and constraints in formulating a structural optimization problem, considering the geometric
nonlinearity of the analyzed truss, and extracting solutions according to the designer’s criteria.

This paper is organized as follows: Section 2 describes the aspects of the multi-objective structural opti-
mization applied in the paper. Section 3 discusses the application of the geometrically nonlinear analysis. The

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Maceió, Alagoas, November 11-14, 2024



Multi-objective structural optimization of a space truss considering geometric nonlinearity and global stability aspects

MOSOP’s formulation is presented in Section 4. Section 5 presents and analyzes the Pareto front obtained and the
non-dominated solutions extracted from it. Finally, this research’s conclusions and future works are reported in
Section 6.

2 Multi-objective structural optimization

This section theoretically presents important concepts covered in this paper, such as the multi-objective struc-
tural optimization and the differential evolution algorithms adopted to solve the proposed problem. It also presents
the structural importance of the objective functions applied in the MOSOP and the method applied to extract the
desired solutions.

2.1 Definition and objective functions

By definition, MOSOPs present two or more conflicting objective functions to be minimized or maximized
simultaneously. As mentioned above, the MOSOP solved in this paper has two objective functions: minimizing
the structure’s weight and maximizing its first critical load factor regarding global stability.

As usual in the literature, the first objective function is to minimize the weight, aiming to reduce the material
consumption in the structure’s design for economic, environmental, and structural reasons. As commonly consid-
ered in the literature (e.g, in [1], [2] and [3]), the total weight of the truss is approximated by the sum of each bar’s
weight, disregarding the masses of the connections and the non-structural masses acting on some of the nodes.

The global stability of structures indicates their sensitivity to second-order effects, that is, those generated by
their displacements. Therefore, verifying the global stability concerning the Euler buckling loads is an important
requirement in the design of a structure, aiming to guarantee safety in terms of the ultimate limit state of stability.
The critical load factor indicates the ratio between the estimated critical load at which the structure becomes
unstable and the load effectively applied. In this sense, maximizing the first critical load factor aims to find a
solution that allows the application of the highest possible load to the structure without causing instability.

2.2 Algorithms and multi-criteria decision-making

The differential evolution algorithm (DE), introduced by Storn and Price [4], is based on the generation
and evolution of a population of candidate solutions with continuous variables. Currently, it is considered one
of the most popular meta-heuristics for solving optimization problems. The DE-based multi-objective struc-
tural optimization algorithms (MOEAs) used to solve the MOSOP formulated in this paper are the success his-
tory–based adaptive multi-objective differential evolution (SHAMODE) and its variation using whale optimization
(SHAMODE-WO), both proposed by Panagant et al. [5]. In addition, the multi-objective meta-heuristic with
iterative parameter distribution estimation (MM-IPDE), proposed by Wansasueb et al. [6], is also applied.

The non-dominated solutions provided by the MOEAs are presented through Pareto fronts. In this study,
the multi-criteria tournament decision (MTD) method, proposed by Parreiras and Vasconcelos [7], is employed to
extract the desired solutions from the Pareto front obtained in the MOSOP. Derived from the MCDM framework,
this method ranks the best and worst solutions based on the values of the objective function and the weights (wi)
assigned to them by the decision-maker, according to the level of importance the DM attributes to each objective
of the problem.

3 Geometrically nonlinear analysis

The primary objective of nonlinear analysis is to search for the equilibrium configuration of structures, which
are under the action of external loads [8]. The geometrically nonlinear analysis contemplates the effects caused by
the deformation and displacements of the structures.

As highlighted by Bonet [9], several methods combining load and displacement increments have been pro-
posed to deal with nonlinear problems, but they have been replaced by arc-length methods, that compel the iterative
solution to follow a certain route toward the equilibrium path. Thus, the family of techniques known as arc-length
consists of controlling the length of the vector that connects a known point of the equilibrium trajectory to the
desired unknown point, that is, the length of the arc for the trajectory to be determined.

In this paper, the cylindrical arc-length technique, proposed by Crisfield [10], is used to solve the geometri-
cally nonlinear problems in the analyzed truss, providing more realistic and exact values for the nodal displace-
ments. The variable tangent stiffness matrix is calculated in each iteration according to the Updated Lagrangian
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formulation, in which the equations are defined based on the equilibrium configuration of the previous step. This
process was accomplished through the program “NUMA-TF (Numerical Analysis of Trusses and Frames)”. The
program (originally called “NLframe2D”) was developed by Rangel in [11]. The calculated displacements are ana-
lyzed in the constraints of the proposed MOSOP. The parameters of the arc-length procedure used in the program’s
simulation are presented in Table 1.

Table 1. Numerical parameters for nonlinear analysis in the program “NUMA-TF”.

Parameter Value

Increment of load ratio in the predicted solution of first step (∆λ0) 0.01

Limit value of load ratio to stop analysis 1

Maximum number of steps to stop analysis 5000

Maximum number of iterations in each step (imax) 100

Desired number of iterations in each step 2

Tolerance to assume that equilibrium has been reached (tol) 10−6

4 Formulation of the MOSOPs and computational experiments

The 25-bar space truss in Figure 1 is the structure to be analyzed. The loading data and the division of design
variables (cross-sectional areas of the bars) in 8 groups are detailed by Rajeev and Krishnamoorthy in [12]. The
variables are discrete and chosen from the 30 options in the set Sin2 = 0.1, 0.2, 0.3, ...2.6, 2.8, 3.0, 3.2 and 3.4
in2, that is, from Scm2 = 0.6452, 1.2903, 1.9355, ...16.7742, 18.0645, 19.3548, 20.6451 and 21.9354 cm2. The
aluminum bars have a specific mass of 2700 kg/m3 and Young’s modulus of 68.95 GPa. A non-structural mass of
45 kg is applied at each free node of the truss.
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Figure 1. 25-bar truss.

The MOSOP was developed to evaluate the truss’s weight and global stability. Regarding the constraints
under study, the stress in each bar must not exceed 275.80 MPa in tension or compression, the maximum displace-
ment of nodes 1 and 2 is 0.89 cm in all directions, and the first natural frequency of vibration must be greater than
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or equal to 10 Hz. The experiment was evaluated through 30 independent runs of the algorithms, each run with
100 generations of 20 individuals (2000 nfe).

Since W (x) is the weight of the truss, f1(x) is the first natural frequency of vibration, λ1(x) is the first
critical load factor, σi(x) is the stress in the ith bar, uj(x) is the displacement of the jth node, x represents the
design variables (cross-sectional areas of the bars), and xL and xU indicate their lower and upper boundaries, this
optimization problem can be written as follows:

MOSOP 1:
min W (x) and max λ1(x),

s.t. |σi(x)| ≤ 275.80 MPa

|uj(x)| ≤ 0.89 cm

f1(x) ≥ 10 Hz

xL ≤ x ≤ xU

(1)

5 Pareto fronts and extracted solutions

After formulating MOSOP 1, the optimization problem was solved through the three DE-algorithms presented
in Section 2.2. Figure 2 presents the non-dominated solutions obtained in the resolution of MOSOP 1 by each meta-
heuristic. According to the DM’s preferences, two solutions were extracted from the Pareto front using the MTD
method. The first scenario (sc1) adopts equal importance/weights to the objective functions, with wi = 0.5 for
both. The second scenario (sc2) indicates w1 = 0.75 for the minimization of the structure’s weight and w2 = 0.25
for the maximization of λ1(x), favoring the extraction of lighter structural solutions. MTD(sc1) is highlighted in
green, and MTD(sc2) in cyan, as shown in Figure 2.
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Figure 2. Solutions obtained for MOSOP 1.

Analyzing the non-dominated solutions obtained, the truss’ weight varied from 223.68 kg to 497.51 kg.
Regarding the first critical load factor, the minimum value observed is 28.25, while the maximum is 220.47. The
structural configuration MTD(sc1), taken from MM-IPDE, presents the values of W (x) = 360.86 kg and λ1(x) =
188.53. As for the solution MTD(sc2), which gives more importance to the minimization of the weight, it was
extracted from SHAMODE, and the objective functions obtained were W (x) = 314.47 kg and λ1(x) = 166.71,
providing a lighter structure, but still presenting a high value for the load factor. Table 2 provides a compilation
of the MTD solutions extracted with both scenarios, as well as the solution with the lowest weight and critical
load factor (indicated as W−) and the one that provided the highest values of W (x) and λ1(x) (appointed as W+).

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Maceió, Alagoas, November 11-14, 2024



J.M.P. Vieira, A.C.C. Lemonge, P.H. Hallak, E.C.R. Carvalho

Table 2 also presents the cross-sectional areas of the bars, the DE-based algorithms that provided the solutions, and
the values of the objective functions. This data provides indications to the designer of the bars for constructing the
structure to obtain the desired configuration and characteristics. To show the structural behavior of the truss, Figure
3 (obtained through the software MASTAN2 [13]) illustrates the first instability mode of the extracted solutions
MTD(sc1) and MTD(sc2).

Table 2. Design variables and objective functions for the MTD and the extreme solutions.

Ai(cm2) sc1 sc2 W− W+

1 4.5161 8.3871 0.6452 21.9354

2 19.3548 14.8387 9.0322 21.9354

3 13.5484 12.2580 21.9354 21.9354

4 3.8710 10.9677 0.6452 21.9354

5 5.1613 3.2258 7.0968 21.9354

6 15.4838 9.0322 5.8064 21.9354

7 21.9354 20.6451 1.9355 21.9354

8 14.8387 16.1290 21.9354 21.9354

W(kg) 360.86 314.47 223.68 497.51

λ1 188.53 166.71 28.25 220.47

Origin MM-IPDE SHAMODE MM-IPDE MM-IPDE

(a) 1st instability mode of MTD(sc1) (λ1 = 188.53). (b) 1st instability mode of MTD(sc2) (λ1 = 166.71).

Figure 3. First instability mode of the MTD solutions. The original configuration of the 25-bar truss is represented
in pink, and the deformed shape is colored in blue.

Regarding the algorithms, MM-IPDE was the one that provided more non-dominated solutions (65.31% of the
total amount of the Pareto front, including the lightest W− and heaviest W+ solutions), followed by SHAMODE
(17.68%) and SHAMODE-WO (17.01%). Using the Hypervolume (HV) [14] as the performance indicator, the
three meta-heuristics presented good efficiency in solving MOSOP 1. Observing the relative HVs of the algorithms
(HVn, normalized by the HV of the total Pareto front, with all non-dominated solutions), the HV-metric indicated
SHAMODE as the best performer (HVn = 0.8700), and then MM-IPDE (HVn = 0.8503) and SHAMODE-WO
(HVn = 0.8434).
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6 Conclusions

Solving MOSOPs with the objective functions of minimizing the weight and maximizing the first critical load
factor is very useful for obtaining lighter and more economical structural solutions while maintaining safe indica-
tors of global stability. The constraints related to the stresses in the bars, the nodal displacements, and the frequency
of vibration are also important to guarantee the structure’s safety and integrity and avoid the resonance effect. The
geometric nonlinearity results in obtaining more realistic and reliable values in the definition of displacements and
deformed configurations of structures despite the higher computational cost.

The solutions obtained for the proposed MOSOP clearly show that minimizing the weight is a conflicting
objective concerning maximizing the first critical load factor. In other words, λ1(x) grows while increasing the
weight and stiffness of the structure and decreases as the truss becomes lighter. It can also be seen that the λ1(x)
values obtained in the solutions are very high, indicating that the analyzed 25-bar truss does not present imminent
risks related to its global stability, given the load applied to it in the problem.

Regarding the solutions extracted through the MTD method, the structural configuration of MTD(sc2) is
more favorable than the one obtained in MTD(sc1), since MTD(sc2) provides a lighter truss while preserving a
high and safe value for the first critical load factor. Concerning the meta-heuristics applied to solve MOSOP 1,
all three algorithms were efficient and satisfactory in solving the proposed problem, with MM-IPDE being the one
to provide more non-dominated solutions. At the same time, SHAMODE presents the best hypervolume, with a
calculated HVn slightly higher than the others.

Future work is expected to propose new MOSOPs that consider the inclusion of more objective functions
(many-objective optimization problems) and to apply these problems in large-scale and more complex trusses,
including shallow domes with intense nonlinear behavior. Finally, machine learning algorithms are expected to be
applied to minimize the high computational costs required to evaluate the objective functions and constraints.
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