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Abstract. This paper aims to address the challenge of multi-objective structural optimization in the search for the
most efficient configuration of members in truss structures. Conflicting objectives, such as the structure’s weight,
the number of discrete cross-sectional areas, the first natural vibration frequency, and the first load factor relative
to overall structural stability, must be optimized simultaneously, resulting in a Pareto front (PF) that provides
non-dominated solutions. NSGA-III is the multi-objective evolutionary algorithm adopted to solve the proposed
optimization problems. Non-dominated solutions are extracted from the PF using a multi-criteria decision-making
(MCDM). New competitive configurations of structural members can be discovered, offering attractive alternatives
to decision-makers in manufacturing, cutting, transportation, checking, and welding.

Keywords: Multi-objective structural optimization, Automatic member grouping, Global stability of structures,
Dynamic behavior of structures, NSGA-III.

1 Introduction

The literature extensively discusses multi-objective structural optimization problems (MOSOPs) with two
objectives. For trusses, most MOSOPs are frequently formulated to minimize both the weight and the maximum
nodal displacement. Incorporating the natural frequencies of vibration into the formulations of MOSOPs aims to
keep structural configurations away from frequencies that can cause problems, such as resonance, which can lead
to structural collapse. Additionally, considering load factors related to the structure’s global stability ensures that
loads are accounted for in the design, maintaining structural integrity even if higher-than-expected loads occur.

Beyond dynamic and global stability considerations, designing structures like trusses and frames often in-
volves leveraging the advantages of grouping members to achieve the designer’s objectives. These benefits can
include improvements in architecture, manufacturing, transportation, assembly, and final inspection. However,
determining the optimal member grouping can be complex, requiring extensive design experience and leading to
a costly and time-consuming trial-and-error process. Even after optimization, the ideal member grouping for the
final design is not always guaranteed.

Several approaches in the literature are designed to address optimal member groupings of bars. Key works
in this context include those by Grierson and Cameron [1], Biedermann and Grierson [2, 3], Biedermann [4],
Galante [5], Shea et al. [6], Barbosa and Lemonge [7, 8], Herencia and Haftka [9], Herencia et al. [10], Liu et
al. [11], Angelo et al. [12], Carvalho et al. [13], Azad et al. [14], Woudenberg and Meer [15], and Turay et al. [16].
More details on these references can be found in a recent work by Carvalho et al. [17]. A method for addressing the
challenge of determining the optimal grouping of bars is to formulate it as a MOSOP, with conflicting objectives
to minimize the structure’s weight and the different number of cross-sections or profiles used in the optimized
design. Therefore, the main objective of this paper is to use the formulation and solution of MOSOPs to face the
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challenge of determining the ideal grouping of members of a truss structure, even if groupings based on symmetry,
architectural and aesthetic aspects, and the designer’s experience are possible in the conceptual design of the
structure. In this context, this paper proposes a formulation for a MOSOP that simultaneously minimizes the
structure’s total weight and the distinct number of cross-sectional areas assigned to structural members, maximizes
the first natural frequency of vibration, and the first load factor concerning global stability.

The experiment evaluated in this paper is the benchmark 10-bar truss, and the algorithm adopted to solve
the MOSOP is the third non-dominated sorting genetic algorithm (NSGA-III). The non-dominated solutions are
collected in a Pareto front (PF), and a multi-criteria decision-maker (MCDM) is adopted to extract solutions from
this PF according to the decision-maker preferences.

This paper is organized as follows: The formulation of the MOSOP discussed in this paper is presented in
Section 2. Section 3 briefly describes the evolutionary algorithm used in this paper to solve the proposed MOSOP.
Section 4 descibes the computational experiment analyzed in this paper. Section 5 presents the results of the
analyzed numerical experiment. Finally, Section 6 reports the conclusions and future work.

2 The many-objective structural optimization problem

The formulation of the MOSOP discussed in this paper is written as:

min W (x) and min ncs and max f1(x) and max λ1(x)

s.t. σi(x) ≤ σ

xL ≤ x ≤ xU ,

(1)

where W (x) is the weight of the structure, written as:

W (x) =
N∑
i=1

ρAiLi (2)

where ρ is the specific mass of the material, Ai is the cross-sectional areas and Li is the length of the i-th bar of
the structure. The number of bars of the structure is denoted by N. f1(x) is the first natural frequency of vibration,
λ1(x) is the smallest load factor concerning the maximum elastic critical load able to be applied to the structure,
and σi(x) is the axial stress at the i-th bar. The search space of the design variables is defined by the lower xL and
upper xU bounds.

3 The adopted evolutionary algorithm

The algorithm utilized is the third non-dominated sorting genetic algorithm (NSGA-III), first introduced by
[18, 19]. The algorithm has proven its efficacy in solving many-objective optimization problems. NSGA-III
(Non-dominated Sorting Genetic Algorithm III) is an evolutionary algorithm designed for solving multi-objective
optimization problems, particularly those involving many objectives (more than three). The main characteristics of
NSGA-III are: 1) NSGA-III extends the capabilities of NSGA-II to handle many-objective optimization problems
efficiently. It aims to find solutions that represent a good approximation of the PF; 2) uses predefined reference
points to guide the selection process. These reference points help maintain diversity among the solutions and
ensure a well-distributed PF; 3) The algorithm assigns individuals to reference points based on their proximity.
During the environmental selection process, individuals are chosen to ensure a good spread of solutions along the
PF; 4) incorporates a niching strategy that assigns solutions to reference points and maintains a diverse popula-
tion. This prevents solutions from convergently affecting a small region of the PF; 5) Like NSGA-II, NSGA-III
uses a non-dominated sorting approach to rank solutions based on Pareto Dominance. Solutions are grouped into
different fronts, with the non-dominated solutions being the first front; 6) While NSGA-II used crowding dis-
tance for maintaining diversity, NSGA-III relies more on the distribution of solutions concerning reference points.
However, crowding distance can still be used as a secondary criterion; 7) NSGA-III ensures elitism by preserving
the best solutions from the current population to the next generation. This helps maintain high-quality solutions
over successive generations; 8) uses genetic operators like crossover and mutation to generate new solutions. These
operators help explore the search space and create diversity in the population; 9) Is designed to be scalable and per-
form well with many objectives. It addresses previous algorithms’ challenges when dealing with many-objective
optimization problems, and 10) it has been shown to perform well in terms of convergence and diversity. It is
widely used in various fields, including engineering, economics, and logistics, for solving complex multi-objective
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optimization problems. Overall, NSGA-III is a robust and efficient algorithm for tackling many-objective opti-
mization problems, offering improved diversity and convergence properties compared to earlier algorithms like
NSGA-II.

4 Computational experiment

The computational experiment analyzed in this section is the traditional 10-bar truss, illustrated in Figure 1
and first introduced by [20]. The sizing design variables are the cross-sectional areas of the bars and they must be
chosen from a discrete set of 42 options (in2): 1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38,
3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 13.90,
14.20, 15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.50. The material has specific mass ρ = 0.1
lb/in3 and Young’s modulus E = 104 ksi. Vertical downward loads of 100 kips are applied at nodes 2 and 4. The
stress in each bar is limited to ± 25 ksi. The experiment was evaluated in 20 independent runs with a population
size of 100 candidate vectors and 2000 generations.
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Figure 1. The 10-bar truss.

5 Results

The PF, in parallel coordinates using normalized objective functions, including dominated and non-dominated
of all independent runs, is presented in Figure 2.

Figures from 3(a) to 3(f) provide pair-in-pair combinations of the PFs concerning the four objective functions.
In these figures, the complete set of non-dominated solutions concerning all runs is represented in blue, whereas
the non-dominated solutions presented in the unified PF are presented in red.

Table 2 shows extracted non-dominated solutions using three scenarios simulating the preferences of an
artificial DM, in which the weights are pointed to w1 (W (x)), w2 (W (ncs)), w3 (f1(x)), and w4 (λ1(x)). For
Scenario 1 (Sc1), the following weights wi were set: w1 =0.25, w2 =0.25, w3 =0.25, and w4 =0.25. For Scenario
2 (Sc2): w1 =0.5, w2 =0.2, w3 =0.15, and w4 =0.15, and, finally, for Scenario 3 (Sc3), w1 =0.9, w2 =0.033, w3

=0.033, and w4 =0.034.
After obtaining all the solutions and non-dominated solutions, it can be difficult for the decision-maker (DM)

to choose the desired non-dominated solutions. Multi-criteria decision-making helps by considering weights (wi)
defined by the DM to the objective functions of the problem. With this strategy, a solution is extracted from the
PFs. The complete details on how the adopted MCDM works can be found, for instance, in [21, 22].

Table 1 provides the design variables dv, the weights W (x), the number of distinct cross-sectional areas ncs,
the first natural frequency f1(x), and the first load factor λ1(x) for the extreme non-dominated solutions of the PFs
presented in Figure 3(a)–(f), in which ndeL and ndeU are the non-dominated extreme solutions at the lower bound
and the non-dominated solutions at the upper bound of the PFs, respectively.

Figure 4(a), (b), and (c) depicts the unified PFs (presenting only non-dominated solutions among all inde-
pendent runs) and the extracted non-dominated solutions using the adopted MCDM. The members of the 10-bar
truss are presented in the same figure 4(d), (e), and (f) – in different colors for each distinct cross-sectional area –
concerning the extracted non-dominated solutions.
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Figure 2. The PF, in parallel coordinates, including dominated and non-dominated of all independent runs.

(a) W (x)× ncs (b) W (x)× f1(x)

(c) ncs × f1(x) (d) W (x)× λ1(x)

(e) ncs × λ1(x) (f) λ1(x)× f1(x)

Figure 3. Non-dominated solutions for the 10-bar truss.
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Table 1. Extreme non-dominated solutions of the PFs presented in Figure 3(a)–(f).

dv W (x)× ncs W (x)× f1(x) W (x)× λ1(x) ncs × f1(x) ncs × λ1(x) f1(x)× λ1(x)

ndeL ndeU ndeL ndeU ndeL ndeU ndeL ndeU ndeL ndeU ndeL ndeU

A1 11.50 5.74 7.97 33.50 5.74 33.50 33.50 33.50 33.50 33.50 33.50 33.50

A2 3.63 2.13 7.97 13.90 2.13 33.50 33.50 13.90 33.50 33.50 33.50 13.90

A3 11.50 13.50 14.20 33.50 13.50 4.97 33.50 33.50 5.12 4.97 4.97 33.50

A4 3.63 1.99 7.97 11.50 1.99 16.90 4.80 11.50 5.12 16.90 16.90 11.50

A5 11.50 1.80 7.97 1.62 1.80 33.50 4.80 1.62 33.50 33.50 33.50 1.62

A6 3.63 3.38 7.97 1.62 3.38 18.80 4.80 1.62 33.50 18.80 18.80 1.62

A7 3.63 11.50 7.97 33.50 11.50 33.50 33.50 33.50 33.50 33.50 33.50 33.50

A8 11.50 2.38 7.97 33.50 2.38 33.50 33.50 33.50 33.50 33.50 33.50 33.50

A9 3.63 2.88 7.97 13.90 2.88 33.50 4.80 13.90 33.50 33.50 33.50 13.90

A10 3.63 3.47 7.97 13.90 3.47 33.50 33.50 13.90 33.50 33.50 33.50 13.90

W (x) (lb) 2772.960 2056.647 2056.647 8266.509 2056.647 11900.027 9494.002 8266.509 12010.507 11900.027 11900.027 8266.509

ncs 2 10 2 4 10 4 2 4 2 4 4 4

f1(x) (Hz) 9.131 8.273 9.266 15.010 8.273 9.215 14.215 15.010 8.876 9.215 9.215 15.010

λ1(x) 462.418 209.959 521.015 559.934 209.959 2707.264 1195.072 559.934 2606.338 2707.264 2707.264 559.934

Table 2. Extracted solutions

dv Sc1 Sc2 Sc3

A1 33.50 15.50 7.97

A2 14.20 7.97 7.97

A3 33.50 15.50 14.20

A4 14.20 7.97 7.97

A5 33.50 7.97 7.97

A6 2.38 7.97 7.97

A7 33.50 15.50 7.97

A8 33.50 15.50 7.97

A9 14.20 15.50 7.97

A10 14.20 7.97 7.97

W (x) (lb) 9579.626 5035.037 3567.588

ncs 3 2 2

f1(x) (Hz) 14.700 11.105 9.266

λ1(x) 1559.240 652.121 521.015

6 Conclusions

This paper proposed and solved a multi-objective structural optimization problem considering four objective
functions: the total weight of the structure to be minimized, the number of different cross-sections of the bars to
be minimized, and the first natural frequency of vibration and the first critical load factor to be maximized. It is
important to emphasize that minimizing weight conflicts with minimizing the number of different cross-sections
of the bars and maximizing the first natural frequency of vibration and the first critical load factor. The results
obtained by NSGA-III were non-dominated solutions represented in a Pareto front using parallel coordinates. Non-
dominated solutions were presented from both the ends of the PF and those extracted according to the decision
maker’s preferences. Future work will address other structures in the context of the MOSOP formulation presented
in this paper.
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(a) (b) (c)

Figure 4. Extracted non-dominated solutions from MCDM for the 10-bar truss.
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