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Abstract. Computation-intensive structural design optimization problems are common in engineering. The com-
putation burden is often caused by expensive simulation models and becomes a problem in practice. To address
such a challenge, metamodeling techniques are often chosen to improve the optimization efficiency. Metamodels,
or surrogate models, are very popular methods and are considered a valuable tool to support a wide scope of ac-
tivities in modern engineering design. The paper discusses strategies to obtain suitable metamodels coupled with
a metaheuristic to assess their quality concerning prediction, considering machine learning techniques used in the
literature. A multi-objective truss structural optimization problem is used to illustrate the approach’s applicability,
considering the structure’s weight and critical load factor as objective functions concerning the truss structure’s
global stability. The numerical results demonstrate the efficiency and computational advantages of the proposed
methodology.
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1 Introduction

In recent years, the application of metaheuristic techniques to solve multi-objective optimization problems has
become an active field of research [1–4]. Metaheuristics are strategies that guide the search process and avoid the
persistence of results in local maxima and minima, and they can use anything from simple local search procedures
to complex learning processes [5]. The goal is to efficiently explore the search space to find optimal solutions or
as close to them as possible.

However, the optimization process is usually very computationally intensive, as evaluating a single function
can take hours or even days for extensive applications. For this reason, metamodeling is an efficient alternative to
reduce the computational costs in the optimization process while maintaining the quality of the solutions. These
models try to avoid using computationally expensive evaluations to obtain (i) better results with the same pro-
cessing time or (ii) similar results more quickly. Numerous papers in the literature use this alternative to reduce
computational costs [6–9].

This paper analyzes a structural optimization problem to evaluate the effectiveness of the multi-objective
metaheuristic with iterative parameter distribution estimation (MM-IPDE) algorithm in conjunction with five dif-
ferent metamodels widely used in different applications (they will be presented in section 3). The optimization
problem concerns minimizing the weight and maximizing the first critical load factor of a 120-bar truss. The axial
stresses and nodal displacements are the constraints. First, a study of the training performance of the five meta-
models is presented. Then, the results for truss optimization are presented, and an analysis is performed using two
performance metrics. Finally, the best solutions are extracted and presented according to some importance set by
the decision maker’s (DM) preferences, using a multicriteria tournament decision (MTD) method.

The paper is organized as follows. Section 2 presents the formulation of the structural optimization problem
and the algorithm used in the numerical experiments. The metamodeling approach used is described in Section 3.
Section 4 presents the numerical experiments and an analysis of the results obtained. Finally, the paper ends with
the conclusions in Section 5.
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2 Multi-objective structural optimization

2.1 The structural optimization problem

A multi-objective structural optimization problem (MOSOP) has two or more objective functions to be min-
imized (or maximized) simultaneously. The MOSOP considered here is to find the set of cross-sectional areas
x = {A1, A2, ..., AN} that minimizes the weight of the structure and maximizes its first critical load factor as
follows.

min W (x) =
N∑
i=1

ρAiLi, and max λ1(x), (1)

subject to the normalized displacement constraints the normalized stress constraints

|uj |
ū

− 1 ≤ 0, j = 1, . . . ,M, (2)

|σi|
σ̄

− 1 ≤ 0, i = 1, . . . , N, (3)

where W is the weight of the structure, ρ is the specific mass of the material, Li is the length of the i−th bar of
the structure, λ1 is the first critical load factor concerning the global stability of the structure, and uj and σi are
the nodal displacements of the j−th translational degree of freedom, and the stress of the i−th bar, respectively.
ū is the maximum displacement for each node, and σ̄ is the allowable stress for the material. M is the number of
translational degrees of freedom, and N is the total number of members in the truss structure.

2.2 The multi-objective DE algorithm

The differential evolution algorithm (DE), introduced by Storn and Price [10], is based on the generation and
evolution of a population of candidate solutions with continuous variables. It is currently considered one of the
most popular metaheuristics for solving optimization problems. The DE-based multi-objective structural optimiza-
tion algorithms (MOEAs) used to solve the MOSOP formulated in this paper is the multi-objective metaheuristic
with iterative parameter distribution estimation (MM-IPDE), proposed by Wansasueb et al. [11].

The MM-IPDE algorithm uses a concept of distribution estimation to tune metaheuristic control parameters
and has become an efficient alternative for many types of optimization problems.

3 Metamodeling

Machine learning (ML) is a data analysis method that enables computers to mimic the natural learning pro-
cesses of humans and animals by learning from experience. Instead of relying on a given equation as a model, ML
algorithms use computational methods to ”learn” directly from data. In supervised machine learning, a model is
created that makes predictions based on the available data and considers uncertainties. This supervised approach
uses classification and regression techniques to develop effective ML models.

In this context, metamodeling is a technique often applied to optimization problems tackled with metaheuris-
tics. Its primary goal is to identify and estimate the relationship between the inputs and outputs of a simulation
model, which is used to evaluate potential solutions in the optimization process [12]. A metamodel effectively
captures the relationship between the values of the decision variables and the simulation results and provides an
approximation of the objective function with significantly reduced computation time compared to direct simulation.

A large number of ML techniques are used in a variety of applications, including artificial neural networks,
gaussian processes, polynomial regression, ensembles (such as random forest and gradient boosted trees), and
support vector machines [13].

In this study, five ML algorithms are applied to a regression problem involving the prediction of continuous
variables: support vector machine (SVM), random forest (RF), gradient tree boosting (GTB), Bagging (BG), and
XGBoost. Each of these metamodels has specific parameters that need to be selected since an appropriate choice
influences the behavior and performance of these metamodels. Table 1 details the parameters used for each of the
five algorithms.

The metamodeling steps proposed in this paper are, therefore as follows:
• Step 1: The Latin hypercube sampling (LHS) method [14] is used to generate four data sets (500, 1000,

1500, and 2000 samples) with the design variables (A) and then the finite element method (FEM) [15] is
used to determine the first critical load factor (λ);
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Table 1. Metamodels parameters.

Metamodel Parameter values

SVM kernel=’rbf’, C= 10000, gamma= 0.1, epsilon= 0.001

RF n estimators= 200, max depth= 10, bootstrap=True, min impurity decrease=1e-07
GTB criterion= ’friedman mse’, n estimators= 300, max depth= 5, learning rate= 0.01,

loss=’squared error’
BG estimator=svm.SVR(), n estimators= 100

XGBoost booster=’gbtree’, objective=’reg:squarederror’, n estimators= 500, max depth= 7,
learning rate= 0.05, eta= 0.1, subsample= 0.7, colsample bytree= 0.8

• Step 2: All data is split into a training set (85% of the data) and a test set (15% of the data);
• Step 3: The metamodel is trained using the parameters in Table 1;
• Step 4: The MM-IPDE algorithm is introduced to solve the optimization problem and the first critical load

factor is predicted using the trained base model.
The steps outlined above are performed for each of the five metamodels considered here.

4 Numerical experiments

This section introduces the spatial truss to be optimized in this paper. The 120-bar truss is shown in Fig. 1 and
is subjected to the MOSOP described in Section 2.1. For example, the truss’s characteristics and descriptions can
be found in [16]. In the experiments, the initial population was randomly generated, with the maximum number
of objective function evaluations being 5000 (50 individuals and 100 generations), the number of independent
runs being 20, and all presented solutions are rigorously feasible. The MM-IPDE algorithm was developed in
MATLAB® and the Python library scikit-learn1 was used for the metamodels, and the FEM was developed by the
authors. The calculations were performed with a MacBook Pro - Apple M2 Pro with 16 GB RAM.
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Figure 1. 120-bar truss, taken from Lemonge et al.[16].

4.1 Results and analysis

Four cases were selected from the training data using the LHS method, corresponding to the size of the
training data set of 500, 1000, 1500, and 2000. In addition, four performance indicators of ML algorithms were
calculated. The results are shown in Figure 2, such as mean square error (MSE) (Figure 2(a)), mean absolute error
(MAE) (Figure 2(b)), mean absolute percentage error (MAPE) (Figure 2(c)), and coefficient of determination (R2)
(Figure 2(d)). In this figure, the horizontal axis refers to the samples.

The performance of all five algorithms was very good, as observed in the Figure 2. It can be seen that
all metamodels produced small values for the performance indicators MSE, MAE, and MAPE, except for SVM,

1https://scikit-learn.org/stable/
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which had slightly higher values. Although the sample size of 500 was small, the five ML algorithms achieved very
high R2 values, reaching 84.92%, 99.51%, 99.04%, 93.56%, and 95.46% for SVM, RF, GTB, BG, and XGBoost,
respectively. The high values of all these ML algorithms prove to be efficient and practicable.

In addition, the computational time in the training phase of the ML algorithms is shown in Figure 3. SVM
required the least computational effort compared to the other ML algorithms. In particular, SMV required only
0.072, 0.044, 0.045, and 0.074 seconds, corresponding to training data sizes of 500, 1000, 1500, and 2000, re-
spectively. The BG metamodel took 0.297, 0.994, 1.052, and 3.209 seconds, making it more expensive than all
the other metamodels, although it performed well on the other metrics. Because of this, all five metamodels were
considered in the structural optimization phase.
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Figure 2. The mean squared error (MSE), the mean absolute error (MAE), the mean absolute percentage error
(MAPE), and the coefficient of determination (R2) of individuals metamodel in the training phase.
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Figure 3. Computational time for the four data sets in the training phase.

In the next step, the optimization results (Pareto fronts) of the original MM-IPDE algorithm and with the
coupled metamodels are shown in Figure 4, considering the data set of 500 (Figure 4(a)), 1000 (Figure 4(b)), 1500
(Figure 4(d)), and 2000 (Figure 4(d)) samples. In the figures and text, the acronym NM (no metamodel) will be
used to refer to the MMIPDE algorithm without any coupled metamodel, and for each coupled metamodel to the
MMIPDE algorithm, the reference will be made through the name of each metamodel. In this stage, the predictions
of the metamodels determine the critical load factors, and the solutions of the multicriteria tournament decision
(MTD) method are also shown in the figure. The MTD method was proposed by Parreiras & Vasconcelos [17]
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and is used to find the best solutions according to the importance (weights) set by the decision maker (DM). Two
scenarios are used, considering two criteria: (i) the weight of the structure and (ii) the first critical load factor. The
scenarios (Sc) are described: scenario 1 - all criteria have the same importance (w1, w2) = (0.5, 0.5), and scenario
2 - criterion (i) is the most important (w1, w2) = (0.75, 0.25). The square in cyan and the diamond in magenta
represent these solutions.

The computational time of these runs is shown in Figure 5. The NM took 559.84s, and the BG took 522.97s,
583.90s, 634.34s, and 674.78s for the 500, 1000, 1500, and 2000 sample data sets, respectively. These are high
values, and the BG is inefficient for the proposal. The other algorithms achieved this in a shorter time than the NM.
For example, the SVM achieved 72.35s, 75.40s, 77.68s, and 77.90s for the 500, 1000, 1500, and 2000 sample data
sets, respectively.
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Figure 4. Pareto fronts of the NM, SVM, RF, GTB, BG, and XGBoost; and MTD solutions for the 120-bar truss.
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Figure 5. Total computational time of the 20 independent runs for each algorithm on each data set.

To measure the performance of the algorithms, the mean and standard deviation (std) of the hypervolume
(HV) and inverted generational distance plus (IGD+) are shown in Table 2. Bold values represent the best results
for each metric. For the mean HV, all algorithms performed well and achieved similar values for the four data sizes.
The same applies to the std HV, where the algorithms achieved small and similar values. Particularly noteworthy
are the SVM and RF metamodels, which achieved the best values for this metric. For the IGD+ metric, the NM
achieved the three best values, followed by the RF metamodel. However, the performance of all algorithms was
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satisfactory for all analyzed data sets.
In a final analysis, the solutions obtained with the MTD method, shown in Figure 4, are presented in Table

3. NM was used in this comparison for the four data size in the two scenarios evaluated. The table shows the
design variables (A) of each solution and their respective objective function values. The algorithm to which these
solutions belong (Origin) is also given at the end of the table. That is, for MTD scenarios 1 and 2, the solutions
come only from the RF, SVM, and NM.

Table 2. Mean and standard deviation (std) of the results obtained for HV and IGD+ from the 20 independent runs
of the 120-bar truss.

Data size Metrics NM SVM RF GTB BG XGBoost
500 HV (mean) 0.786505 0.782920 0.773055 0.747542 0.780324 0.791353

HV (std) 0.004803 0.004478 0.003180 0.002103 0.005604 0.003605

IGD+ (mean) 0.002341 0.008713 0.014383 0.035173 0.001747 0.005802

IGD+ (std) 0.001135 0.001203 0.000629 0.000271 0.001580 0.002157

1000 HV (mean) 0.792170 0.818030 0.783674 0.765207 0.757950 0.776306

HV (std) 0.004879 0.004048 0.002011 0.001778 0.005082 0.005105

IGD+ (mean) 0.001135 0.000511 0.015705 0.031909 0.006119 0.017105

IGD+ (std) 0.000644 0.000346 0.000151 0.000227 0.001716 0.005487

1500 HV (mean) 0.794940 0.808317 0.787943 0.768157 0.767858 0.801262

HV (std) 0.004861 0.004256 0.002345 0.002752 0.003535 0.008391

IGD+ (mean) 0.004609 0.004915 0.018733 0.041639 0.025036 0.011281

IGD+ (std) 0.001351 0.000719 0.000317 0.000371 0.001140 0.006958

2000 HV (mean) 0.798332 0.812562 0.795624 0.770421 0.777547 0.806076

HV (std) 0.004887 0.006494 0.001582 0.002025 0.003098 0.004347

IGD+ (mean) 0.008505 0.008748 0.028095 0.056467 0.030764 0.017669

IGD+ (std) 0.001570 0.001958 0.000339 0.000335 0.001054 0.004004

Table 3. Design variables (dv) and objective function values of the MTD solutions (Scenarios (Sc) 1 and 2) of the
120-bar truss. W (x) in kg.

Data size 500 1000 1500 2000

dv Sc1 Sc2 Sc1 Sc2 Sc1 Sc2 Sc1 Sc2

A1 0.013962 0.014000 0.013110 0.014000 0.014000 0.014000 0.014000 0.013458

A2 0.005010 0.005302 0.004642 0.003458 0.005218 0.005043 0.002195 0.004317

A3 0.001526 0.001581 0.001501 0.001782 0.001304 0.002011 0.007145 0.001561

A4 0.008819 0.002411 0.011352 0.003862 0.013994 0.008535 0.014000 0.010381

A5 0.002862 0.003089 0.003786 0.004103 0.004611 0.003374 0.014000 0.004258

A6 0.000878 0.001066 0.000384 0.001008 0.000314 0.000700 0.004362 0.000645

A7 0.000704 0.000487 0.000551 0.000450 0.000426 0.000404 0.000200 0.000380

W (x) 25602.1088 18016.7392 28125.569 19810.466 32341.369 25475.732 41836.667 27329.308

λ1(x) 9.330 7.045 9.972 7.727 10.910 9.131 11.414 9.885

Origin RF SVM RF SVM SVM SVM NM RF

5 Conclusions

In this paper, we propose to apply five traditional machine learning algorithms, SVM, RF, GTB, BG, and
XGBoost, as meta-models to nature-inspired metaheuristic algorithms for a regression problem to predict critical
load factor values in a multi-objective structural optimization problem. The approach was shown to achieve good
results, both in terms of objective function values (weight and critical load factor) and in terms of computational
time reduction. The solutions obtained with the metamodels are competitive even without the use of the finite
element method during the optimization process. The results were confirmed by using performance metrics both
during the training of the metamodel dataset and during the evolutionary process.
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For future work, we intend to apply the approach to solve other problems involving large optimization prob-
lems (larger number of bars, for instance, 120- and 582-bar truss) and expensive simulation models (nonlinear
analysis). We also intend to investigate the effects of the parameters of the machine learning algorithms.
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