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Abstract. Structural engineering projects require reliable information about the parameters of the designed 

systems that convey precise predictions about the behavior of the system under different load cases. These 

predictions are derived from numerical engineering models using the well-established Finite Element Method 

(FEM). However, due to the presence of uncertainties and assumptions made during the construction of the model, 

the resulting response may not accurately represent the real structural behavior. Thus, the established approach 

involves supplying the numerical model with experimental data to reduce numerical-experimental error in a 

process called Finite Element Model Updating (FEMU). The focus of this paper is on the implementation of the 

Bayesian Optimization Algorithm (BOA) to solve FEMU problems. To assess the behavior of the algorithm, many 

cases are analyzed from lower evaluation time to higher complexity cases and then compared with other methods, 

such as Bayesian Inference, and Particle Swarm Optimization. Results show that BOA can attain good results in a 

short amount of time when applied to FEMU for low dimensionality problems compared with well-established 

methods. Overall, this paper reviews FEMU methods and proposes the implementation of a novel approach, 

demonstrating its effectiveness in solving model updating problems. 

Keywords: finite element model updating; bayesian optimization algorithm; structural dynamics 

1  Introduction 

Structural engineering projects are often subject to severe ambient conditions, being commonly exposed to 

many occurrences of dynamical loads. Such loads may result in unwanted or dangerous vibrations if not correctly 

addressed, potentially leading to catastrophic failures. Therefore, correct evaluation of the system’s dynamic 

properties and response is very much needed. This is often done by constructing a numerical Finite Element (FE) 

model, which allows experimentation and study of changes in the construction of the model by easy modification 

of its parameters. 

However, FE models are not usually entirely accurate. These models exhibit many errors that arise due to 

uncertainty from many sources. Ereiz [1] and Sehgal [2] list several factors that contribute to the modeling error 

of FE models, such as incorrect assumption of material and section properties, idealization of the model, faulty 

boundary conditions, joint modeling, rounding errors, and many others. On the other hand, the real structure is not 

ideal as well. Marwala [3] addresses as uncertainties fabrication processes, damage, and errors and noise in 

experimental measurements. 

On behalf of all these sources of uncertainty, FE models need to be corrected for proper use in the prediction 

of dynamical properties of the system. Finite Element Model Updating (FEMU) is an inverse engineering problem 

in which the input and output of the system are known, but the system has unknown or inaccurate parameters. The 

objective of this problem is to correlate numerical and experimental measures of dynamical properties, adjusting 

system parameters. Several techniques for FEMU exist and have been reviewed by Ereiz [1], Sehgal [2] and Gomes 
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[4]. 

These techniques may be classified as optimization and sampling techniques. Algorithms used for 

optimization minimize a function, commonly the error between natural frequencies of experimental and numerical 

measures. Examples of used algorithms for this end are Particle Swarm Optimization (PSO), used by Li [5], 

Marwala [6], Qin [7], and many others, and Genetic Algorithm (GA), also studied by Marwala [6], Gomes [4] to 

name a few. These established algorithms are fast to implement and attain good results. 

Sampling techniques, on the other hand, demand repeated sampling of the system to attain parameter 

distribution curves or likelihood distribution. The most used sampling technique is Bayesian Inference, which has 

been studied by authors such as Marwala [3] [8], Carlon [9] and Lu [10]. This method not only gives the most 

probable parameters of the system but also accounts for some uncertainty, however, it’s quite slow given that a 

high number of samples is needed for good resolution of the likelihood distribution. 

In this work, the use of the Bayesian Optimization Algorithm (BOA) in FEMU studied by Mainardes [11] is 

continued, and its application is compared with other FEMU techniques. BOA is a derivative-free optimization 

algorithm that operates by constructing a statistical model with measured points to predict the best point to evaluate 

next. This process is done by another optimization of an acquisition function built with the statistical model, adding 

more time to a single interaction with the intent of reducing total iterations of the objective function. This works 

well when the evaluation of the objective function is computationally expensive, reducing overall runtime. 

However, BOA is a low-accuracy algorithm, meaning that results may not be as precise as PSO, and works better 

in low-dimension problems. This algorithm has seen lots of uses in many areas, as shown by Malu [12], and even 

applications in aerospace engineering by Lam [13] and Morita [14]. 

Overall, this work reviews Bayesian Inference, PSO and BOA, comparing those methods in three different 

evaluation time cases. The first is to optimize a simple test function, using PSO and BOA. Then, for the application 

of FEMU, a honeycomb panel is used with two different models of different complexity, using the natural 

frequencies as the objective function. In the following sections, a quick review of the used methods is done. Then, 

the honeycomb panel and its numerical models are described before showing results and discussion about the three 

used methods. 

2  Mathematical background 

2.1 Dynamic systems 

Gomes [4] states that eq. (1) describes the free vibration of undamped multiple-degree-of-freedom systems: 

 

 (𝑲 − 𝜔2𝑴){𝜙} = 𝟎.  (1) 

which K and M are stiffness and mass matrices, respectively. Solution of eq. (1) through an eigenvalue problem 

returns the eigenvalues 𝜔2 associated with natural frequencies and eigenvectors {𝜙} that represent mode shapes. 

FE models allow the construction of matrices K and M, thus obtaining the natural frequencies that will be used to 

correlate numerical and experimental data. 

2.2 Bayesian inference 

The Bayesian Inference method is derived directly from Bayes Theorem, functioning by updating the belief 

upon the distribution of a set of parameters with insertion of observed data. Bayes theorem is given by eq. (2): 

 

 𝑃(𝜽|𝑫) =
𝑃(𝑫|𝜽)⋅𝑃(𝜽)

𝑃(𝑫)
   (2) 

where 𝜽 is the vector that represents the set of parameters to be updated and D is the matrix of observed data. 

Thus, eq. (2) correlates the probability distribution of the observed data 𝑃(𝑫), the initial probability distribution 

of the set of parameters, known as the prior distribution 𝑃(𝜽), and the likelihood distribution 𝑃(𝑫|𝜽) to the 

distribution of the parameters given the observed data or the posterior distribution 𝑃(𝜽|𝑫). 

Throughout this work, the likelihood and the priori functions are built to be normal, guaranteeing a normal 
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posterior distribution through eq. (2), as stated by Marwala [3]. Thus, the likelihood distribution is represented by 

eq. (3): 

 

 𝑃(𝑫|𝜽) =
𝟏

𝒛(𝐷|𝜃)
𝑒𝑥𝑝 (− ∑

𝛽𝑖

2
(

𝑓𝑖
𝑚−𝑓𝑖(𝜽)

𝑓𝑖
𝑚  )

2
𝑁𝑚
𝑖 )  (3) 

where 𝛽𝑖 are weighting constants associated with each natural frequency, 𝑁𝑚 is the number of measured modes, 

and 𝑓𝑖
𝑚 and 𝑓𝑖(𝜽) are measured and numerical experimental frequencies, respectively. 𝑧(𝑫|𝜽) is a normalization 

factor. Analogously, the prior distribution is given by eq. (4): 

 

 𝑃(𝜽) =
𝟏

𝒛(𝜽)
𝑒𝑥𝑝 (− ∑

𝛼𝑖

2
(

𝜃𝑖−𝜃𝑖
0

𝜃𝑖
0  )

2
𝐷
𝑖 )  (4) 

where 𝜃𝑖 is an updating parameter, 𝜃𝑖
0 is the prior mean of the updating parameter, 𝐷 is the number of updating 

parameters, and 𝑧(𝜽) is the normalization factor. Combining both equations using Bayes Theorem, the posterior 

distribution is obtained and given by eq. (5): 

 

 𝑃(𝜽|𝑫) ∝ 𝑒𝑥𝑝 (− ∑
𝛽𝑖

2
(

𝑓𝑖
𝑚−𝑓𝑖(𝜽)

𝑓𝑖
𝑚  )

2

− ∑
𝛼𝑖

2
(

𝜃𝑖−𝜃𝑖
0

𝜃𝑖
0  )

2
𝐷
𝑖

𝑁𝑚
𝑖 )  (5) 

which is also normal. This is the distribution of probabilities from which samples will be obtained using a Markov 

Chain Monte Carlo (MCMC) sampled with Metropolis acceptance criteria. This algorithm will generate a set of 

samples and obtain 𝑃𝑖(𝜽|𝑫) using eq. (5). Then, the next sample will be obtained based on a normal distribution 

centered on the current set of parameters, calculating probability 𝑃𝑖+1(𝜽|𝑫). This new sample is accepted or 

rejected by the Metropolis criteria, which Marwala [6] and Sadegh [15] describe in eq. (6): 

 

 𝑃𝑎𝑐𝑐𝑒𝑝𝑡(𝑖 → 𝑖 + 1) = 𝑚𝑖𝑛 (1,
𝑃𝑖+1(𝜽|𝑫)

𝑃𝑖(𝜽|𝑫)
) (6) 

if accepted, the set of parameters 𝜽𝒊 will be updated to 𝜽𝐢+𝟏, resulting in a random walk that, given enough samples, 

will represent the posterior distribution which may be used to obtain data about the parameters of the system. 

2.3 Particle swarm optimization 

PSO is an optimization algorithm initially proposed by Kennedy and Ebehart [16] that aims to copy the 

observed behavior of flocks of birds and fishes. It rapidly gained popularity being of simple implementation and 

great results, gaining several adaptations over the years. Authors such as Li [5] and Marwala [6] and many others 

have already implemented such method for FEMU, being a very popular algorithm. 

This algorithm operates on so-called particles. Those particles are attracted by the region of the best result 

they have crossed and by the best spot any particle ever crossed. Thus, each particle 𝑖 may be represented by two 

variables at each iteration 𝑘, position 𝒑𝒊(𝑘) and velocity 𝒗𝒊(𝑘). Initially, each particle is given a random position 

and velocity which are updated every iteration by eqs. (7) and (8): 

 

 𝒗𝒊(𝑘 + 1) = 𝑤(𝑘) ⋅ 𝒗𝑖(𝑘) + 𝑐1 ⋅ 𝑟𝑎𝑛𝑑(0,1) ⋅ (𝑙𝑏𝑒𝑠𝑡,𝑖 − 𝒑𝑖(𝑘)) + 𝑐2 ⋅ 𝑟𝑎𝑛𝑑(0,1) ⋅ (𝑔𝑏𝑒𝑠𝑡 − 𝒑𝑖(𝑘)) (7) 

 

 𝒑𝑖(𝑘 + 1) = 𝒑𝑖(𝑘) + 𝒗𝑖(𝑘 + 1) (8) 

where 𝑤(𝑘) is a factor between 0 and 1 that reduces the speed at later iterations for better convergence, rand(0,1) 

is a uniform random number between 0 and 1,𝑙𝑏𝑒𝑠𝑡,𝑖 is the best position found by the particle 𝑖, 𝑔𝑏𝑒𝑠𝑡  is the best 

position found overall and 𝑐1 and 𝑐2 are acceleration constants.  

2.4 Bayesian optimization algorithm 

BOA operates by constructing a statistical model of the objective function. Here this is done by Gaussian 
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Processes (GP), which is then used to construct an acquisition function in terms of mean and standard deviation 

of the model. This function is then maxed to obtain the best next point of evaluation. This essentially increases the 

time taken to run an iteration, however, reduces overall time by reducing the number of total iterations needed, 

which is advantageous when the evaluation of an objective function is expensive. The details of the functioning of 

the BOA are given by Snoek [17], while a review of GPs can be seen by Wang [18]. 

The statistical model is constructed using data from all points available, creating a GP whose mean and 

standard deviation at every point in the domain are obtainable by eqs. (9) and (10), respectively: 

 

 𝜇(𝒙∗) = 𝑘(𝒙, 𝒙∗)𝑇(𝑘(𝒙, 𝒙) + 𝜎𝑟
2𝑰)−1𝒚 (9) 

 

 𝜎(𝒙∗) = 𝑘(𝒙∗, 𝒙∗) + 𝑘(𝒙, 𝒙∗)𝑇(𝑘(𝒙, 𝒙) + 𝜎𝑟
2𝑰)−1𝑘(𝒙, 𝒙∗) (10) 

where 𝒙 is the vector of observed points, 𝒙∗ is an unobserved point in the domain and 𝒚 is the vector of observations 

so far. 𝜎𝑟 is a hyperparameter of the algorithm that represents expected noise in observed samples. 𝑘(𝒙, 𝒙) is the 

matrix of covariance between points, which is obtained through a kernel function. Snoek [16] states that for 

optimization problems, a Matern 52 function works well, however other options exist. The Matern is given by eq. 

(11): 

 

 𝑘𝑀52(𝒙, 𝒙∗) = 𝜎𝑣 (1 +
√5𝑟2(𝒙,𝒙∗)

𝜎𝑙
+

5

3𝜎𝑙
2 𝑟2(𝒙, 𝒙∗)) 𝑒𝑥𝑝 (−

√5𝑟2(𝒙,𝒙∗)

𝜎𝑙
) (11) 

where 𝜎𝑣 and 𝜎𝑙 are hyperparameters of the kernel function of verticality and horizontality, respectively, and 

𝑟2(𝒙, 𝒙∗) is the squared Euclidian distance between two points in the space. Finally, the acquisition function is 

defined in terms of the calculated mean and deviation. For this work, the Expected Improvement function is defined 

and used as in eq. (12): 

 

 𝐸𝐼(𝒙) = (𝜇 − 𝑓𝑚𝑖𝑛 − 𝜆) ⋅ 𝛷 (
𝜇−𝑓𝑚𝑖𝑛−𝜆

𝜎
) + 𝜎 ⋅ 𝜑(

𝜇−𝑓𝑚𝑖𝑛−𝜆

𝜎
) (12) 

where 𝑓𝑚𝑖𝑛 is the minimum value observed and 𝜆 is a hyperparameter that encourages exploration of unseen areas 

of the domain when assigned higher values. Finally, 𝜑 and Φ are the probability and cumulative density functions, 

respectively. 

3  Materials and methods 

3.1 Materials and experimental setup 

For this work, experimental measurements of a honeycomb Al-Al panel, illustrated on Fig. 1a, were taken 

with impact testing performed with a PCB 086c02 model impact hammer. The measures were obtained by a 

352a21 model accelerometer and recorded with 01 db dB4 acquisition hardware and software for impact on a total 

of 49 points over the panel. Recorded data was then processed using SimCenter Testlab 2306 software, obtaining 

mode shapes and natural frequencies for the first five modes. 

 Full specifications for the honeycomb panel are given in the previous work by Mainardes [11], and the most 

relevant geometrical and mechanical properties of the core and aluminum external layer are summarized in Tab 1. 

3.2 Methodology and modeling 

Before applying the FEMU methodology to the honeycomb panel, both optimization functions are applied to 

minimize a simple test function. This is made to observe how BOA behaves when given an otherwise very simple 

function with very quick evaluation time. Thus, the chosen test function was the Sphere Function, given by eq. 

(13), which has a global minimum at the origin: 

 

 𝑓(𝒙) = ∑ 𝑥1
23

𝑖=1  (13) 
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(a) (b) (c) 

Figure 1. Panel and modeling (a) Honeycomb panel (b) Laminated Model (c) Solid-Plate Model. 

Table 1. Geometric and mechanical parameters of the honeycomb panel 

Material Property Value 

Honeycomb HexWeb CRIII 

– Al 5056 – 1/4” – 0,001P 

(10P) core 

Shear Modulus 𝐺𝐿 221 𝑀𝑃𝑎 

Shear Modulus 𝐺𝑊  103 𝑀𝑃𝑎 

Equivalent density 𝜌𝑐𝑜𝑟𝑒  82 𝑘𝑔/𝑚² 

Thickness 𝑡𝑐𝑜𝑟𝑒 14.4 𝑚𝑚 

Aluminum 2024-T3 

Elastic Modulus 𝐸𝑎𝑙  73.9 𝐺𝑃𝑎 

Density 𝜌𝑎𝑙  2780 𝑘𝑔/𝑚² 

Thickness 𝑡𝑎𝑙 0.3 𝑚𝑚 

Honeycomb panel 

Overall Thickness 𝑡 15 𝑚𝑚 

Length 𝐿 280 𝑚𝑚 

Width 𝑊 300 𝑚𝑚 

        

        The choice of three parameters is made as further uses of both algorithms will also be three-dimensional for 

this work. Then, FEMU is applied to the honeycomb panel. There are two modelings of the panel, both described 

by Mainardes [11] in previous work, which are named as Laminated Model and Solid-Shell Model, that are shown 

in Figs. 1b and 1c. The function to be optimized for PSO and BOA is given by eq. (14): 

 

 𝑓(𝜽) = ∑ (𝑐𝑖 ⋅ (
𝑓𝑖

𝑚−𝑓𝑖(𝜽)

𝑓𝑖
𝑚 ⋅ 100)

2

)5
𝑖=1  (14) 

where 𝑐𝑖 is a weighting factor. The vector 𝜽 is comprised of three parameters, namely Shear Moduli 𝐺𝐿 and 𝐺𝑊 of 

Honeycomb core and external layer Elastic Modulus 𝐸𝑎𝑙 . The range at which each parameter is searched is given 

in Tab. 2. 

Table 2. Search range of updated parameters 

Parameter Minimum search range Maximum search range 

𝐺𝐿 100 𝑀𝑃𝑎 300 𝑀𝑃𝑎 

𝐺𝑊 100 𝑀𝑃𝑎 300 𝑀𝑃𝑎 

𝐸𝑎𝑙  60 𝐺𝑃𝑎 80 𝐺𝑃𝑎 

 

As for algorithm parameters, Bayesian inference takes a total of 5000 samples, while PSO searches with 10 

particles over 100 generations. Finally, BOA performs 120 evaluations of objective function before stopping. 

4  Results and discussion 

Starting with the optimization of the sphere function, Table 3 shows the results obtained by both algorithms 

when run over 500 times in this case. Analyzing Table 3, PSO performs better than BOA for low-complexity 

functions. Not only it is way faster to evaluate, due to BOA having to construct the statistical model and acquisition 

function, but it also shows the low accuracy aspect of BOA. While results of BOA over 500 runs tend to stay 
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around 0, they have relatively high deviation, especially when compared to PSO results. This shows that for simple 

cases, BOA is not adequate, being of hard implementation and poor results. 

Table 3. Coefficients in constitutive relations 

Results 𝑥1 𝑥2 𝑥3 Elapsed time (s) 

PSO mean −7.7 ⋅ 10−8 −7.3 ⋅ 10−8 −6.9 ⋅ 10−8 0.0013 
PSO deviation 0.000001964 0.000002451 0,000003331 0.0035 

BOA mean 0.0148 −0.0088 −0.0056 65.753 
BOA deviation 0.4698 0.4643 0.4522 1.1724 

 

Tables 4, 5, and 6 show results when applying these algorithms as FEMU methods to both the honeycomb 

numerical models. It is noted that evaluation of the Laminated Model takes around 4.4 seconds while evaluating 

the Solid-Plate model takes about 10.3 seconds. 

Table 4. Updated parameters for all FEMU methods 

Algorithm 
Laminated Model Solid Plate Model 

𝐺𝐿 (𝑀𝑃𝑎) 𝐺𝑊 (𝑀𝑃𝑎) 𝐸𝑎𝑙  (𝐺𝑃𝑎) 𝑇𝑖𝑚𝑒 (𝑠) GL (𝑀𝑃𝑎) 𝐺𝑊 (𝑀𝑃𝑎) 𝐸𝑎𝑙  (𝐺𝑃𝑎) 𝑇𝑖𝑚𝑒 (𝑠) 
Bayesian inference (mean) 222.0 128.8 72.9 25050 266.5 136.3 72.9 47201 

PSO 212.7 122.7 73.3 4575 267.3 134.4 72.7 10209 

BOA 214.0 122.6 73.3 657 265.5 134.7 72.7 1246 

Table 5. Coefficients in constitutive relations 

Laminated Model 
Experimental Bayesian Inference PSO BOA 

Freq. 𝑐𝑖  Freq. Error (%) Freq. Error (%) Freq. Error (%) 

Mode 1 664.7 5 676.7 −1.805 676.1 −1.715 676.1 −1.715 
Mode 2 1031 3 1015 1.552 1014 1.610 1014 1.610 
Mode 3 1334 3 1321 0.960 1320 1.027 1321 0.997 
Mode 4 1600 1 1598 0.106 1592 0.494 1592 0.475 
Mode 5 1699 1 1699 0.041 1693 0.353 1694 0.324 

 

The results show that not only does BOA perform slightly better than PSO, but it is also about seven to eight 

times faster than PSO, which proves especially advantageous when using it for FEMU on the higher evaluation 

time of the Solid-Plate model. The low accuracy of BOA presented in the test function case also shows not to be 

a problem when applying to FEMU, as BOA was able to attain good, if not better, results than Bayesian Inference 

and the highly accurate PSO. These results also highlight the difference between sampling and optimization 

algorithms. Bayesian inference is much more time-consuming than both other methods, however, due to its nature, 

uncertainty of the parameters is also acquired through the probability distribution function, which may be desired 

when working with highly uncertain systems.  

Table 6. Coefficients in constitutive relations 

Solid-Plate Model 
Experimental Bayesian Inference PSO BOA 

Freq. 𝑐𝑖  Freq. Error (%) Freq. Error (%) Freq. Error (%) 

Mode 1 664.7 5 669.9 −0.782 668.7 −0.602 668.7 −0.602 
Mode 2 1031 3 1026 0.456 1024 0.650 1024 0.640 
Mode 3 1334 3 1330 0.315 1328 0.442 1328 0.472 
Mode 4 1600 1 1599 0.063 1595 0.275 1595 0.281 
Mode 5 1699 1 1707 −0.465 1704 −0.294 1704 −0.271 

 

On the other hand, the optimization algorithms shown are fast and precise, offering good, updated models 

that accurately represent the dynamic characteristics of the studied system, as evidenced by the maximum 

frequency error of less than 2% on the Laminated Model and less than 0.7% on the more precise Solid-Plate Model. 
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Overall, BOA attained great results on the FEMU applications presented. However, many cases demand 

higher dimensionality problems, in which further testing of BOA is needed, as Malu [12] presents some challenges 

faced when extending the application of this algorithm for higher dimension cases. 

5  Conclusions 

BOA and other methods were used in FEMU problem application using a honeycomb Al-Al panel, attaining 

great results, especially in the Solid-Plate model, achieving good correlation between numerical and experimental 

frequencies. Testing shows that BOA underperforms when applied to simple test functions when compared to 

PSO, however, excels when compared with the same methods as it is applied to model updating, being faster and 

achieving comparable results. 

Some further investigations are still ongoing when applying BOA to other cases, exploring higher 

dimensional problems for further inspection of scenarios where the algorithm under or overperforms when 

compared with other already well-stablished algorithms for FEMU. 
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