i ﬁlmﬁ’u
XLVCILAMCE

Structural damage detection using FRFs and machine learning methods
Dianelys V. Ruiz!, Bernardo L. Poncetti', Marcos M. Futai!

'Dept. of Structural and Geotechnical Engineering, Universidade de Sdo Paulo
Avenida Professor Almeida Prado Travessa 2 N° 83, 05508-070, Sdao Paulo/SP, Brazil
dvegaruiz@usp.br, bernardoponcetti@usp.br, futai @usp.br

Abstract. In this paper, experimental tests and numerical simulations are conducted to evaluate the performance
of different models for structural damage identification and quantification. For this purpose, an aluminum beam
in Laboratory conditions is utilized as a test structure. Firstly, impact tests are performed to identify the modal
parameters and frequency response functions (FRFs) of the healthy structure. Then, different damages are induced
in the beam by means of rectangular notches, and FRFs from each damage scenario are measured. Meanwhile, a
simplified numerical model of finite elements of the beam is developed and calibrated with respect to experimental
data. The calibrated model is used to generate a set of simulations representing the different damage scenarios
induced experimentally. The damage is introduced in the numerical model by reducing the cross-sectional area.
Normalized FRF amplitudes are used as the damage indexes. To increase the predictive capability of the models,
uncertainties are introduced considering the FRF amplitudes as random variables. Afterward, different datasets are
constructed and several well-established machine learning classifiers such as Decision Tree, SVM and KNN are
trained to perform damage identification and quantification. Finally, experimental data measured on the damaged
beam are used as input variables to evaluate the prediction capacity of the trained classifiers. Undamaged and
damaged data are correctly classified by most of the classifiers. However, to quantify the degree of damage some
shortcomings are found.
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1 Introduction

The detection of structural damage in civil engineering structures has been a concern for researchers and
engineers in the last decades. Therefore, numerous damage detection approaches have been developed with the
aim of providing means of early warning against damage or any type of structural anomaly (Ahmadi et al. [I1],
Dilena et al. [2], He and Zhou [3], Aied et al. [4], Li et al. [5]). Vibration-based methods, which rely on the global
dynamic behavior of the structure to assess its condition and identify structural damage have received considerable
attention lately.

Vibration-based damage detection is performed by first extracting a reference pattern from the vibration
response and then applying a pattern recognition method to compare the damaged pattern with that of the reference
condition (Avci et al. [6]). Commonly, damage to the structure has been explained as changes in modal parameters
such as the natural frequencies, mode shapes, and structural damping. Therefore, several researchers have studied
damage detection techniques based on changes in structural dynamic characteristics.

Among a variety of vibration-based approaches, one of the dynamic features adopted by many researchers
is the frequency response function (FRF). It has been demonstrated that FRF can be used as a damage index with
success (Bandara et al. [[7]], SAMPAIO et al. [8]], Lee and Shin [9]). In addition, the development of machine learn-
ing approaches in recent years have allowed promising results in damage detection. A great variety of algorithms
has been employed by several researchers. Each algorithm has its own technique and hyperparameters which can
be turned to achieve a better performance in anomaly detection. However, the main challenge is to rely on enough
data from undamaged and damaged structural conditions. These data are usually produced through computational
simulations, employing analytical or numerical models. Although high-fidelity computational models represent
the structural behavior more realistically, the higher computational cost justifies the adoption of simpler models.

Thus, this study aims to evaluate some well-established machine learning approaches for structural damage
detection using numerical and experimental data. For this purpose, a series of experimental tests on an aluminum
beam in laboratory conditions are conducted to measure FRFs from undamaged and damaged conditions. The
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normalized FRF amplitudes are utilized as damage indexes. Damages are induced on the beam by means of rect-
angular notches at different locations. At the same time, a simplified numerical model of the beam is used to
generate datasets to train and validate different machine learning classifiers, with the goal of identification and
quantification of damages. The damage is modeled as a partial reduction of the cross-sectional area. Moreover,
uncertainties coming from different sources are considered assuming that FRF amplitudes are random variables.
Datasets considering two levels of uncertainties and reductions in cross-sectional area are considered. A set of
machine learning models, including Support Vector Machine (SVM), Decision Tree (DT), and K-Nearest Neigh-
bors (KNN) are tested and validated to perform damage identification and quantification. The results show that
the presence of damage can be successfully identified. However, the quantification of damages has shown some
shortcomings.
This study preceded the one published in Ruiz et al. [10].

2 Experimental program

An aluminum beam with dimensions of 1200mm x76.2mmx6.35mm, and it is installed at Lab-Infra from
University of Sdo Paulo. The geometric and mechanical properties of the beam are shown in Tab. [I} The beam
is tied in by two clamps at its ends, as can be seen in Fig. [Th. Thus, the free span of the beam is 1120 mm. Five
piezoelectric accelerometers with 5g capacity are installed at the bottom of the beam at different locations. These
accelerometers’ positions are established to coincide with the anti-nodes of the first three vertical vibration modes,
previously obtained numerically by means of modal analysis. A Data Acquisition System from BDI company
is used to sample the acceleration signals at 1000 Hz. The ambient temperature conditions at the Laboratory
remained stable during the tests. Therefore, it is assumed that the experimental measurements were not affected
by temperature effects in this study.

Table 1. Geometric and mechanical properties of the beam.

Magnitude Unit Value
Torsional constant m? 2,36x1077
Moment of inertia around y—axis m?* 2,34%x1077
Moment of inertia around z—axis m* 1,63x1077
Polar moment of inertia m? 2.36x1077
Cross-sectional area m? 4841074

Material density kg/m? 2700
Modulus of elasticity N/m? 5,77x1010
Shear modulus N/m?  4,66x10'"

2.1 Impact tests on healthy structure

To identify the modal parameters, free vibration tests are performed. The beam is excited by an impact applied
with an instrumented hammer at three different positions, which are shown in Fig. [Tb. These positions are chosen
to excite the first three vibration modes that have the maximum vertical displacements at these points. Using the
acceleration signals recorded by the accelerometers, the modal frequencies and damping rates are obtained using
the Short Time Fourier Transform (STFT) technique. The natural frequencies of the three first vibration modes are
f1=21,6 Hz, f, = 59,3 Hz and f5 =121,3 Hz, respectively. The damping rates are & =0,72 %, & =0,51 % and
&3 =0,66 %, respectively. The FRFs at each accelerometer position are computed and established as benchmark
data from the healthy beam.

2.2 Impact tests on damaged structure

In order to induced different damages, rectangular notches are created on the beam at different locations. Each
notch is approximately 3 mm wide and 2 mm deep. Each notch created represents a damage scenario. Thus, nine
damage scenarios are recreated in total, from one notch until nine notches on the beam. This is better illustrated
in Fig. 2} Then, in the same way as described in the previous section, impact tests are performed and acceleration
responses and impact forces are recorded simultaneously. Finally, the FRF at each accelerometer’s position for
each damage scenario is computed and established as benchmark data from the damaged beam.
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Figure 1. Experimental setup for dynamic testing (Ruiz et al. [10]]). a) test structure, b) accelerometers’ positions
and excitation points.
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Figure 2. The nine damage scenarios induced on the beam.

3 Numerical model of the beam

The test structure is simulated as a fixed-fixed beam. To obtain its dynamic response, a simplified FE model
composed by 120 beam elements and 121 nodes is developed in MATLAB [11]]. Only the vertical direction
is considered in the analyses. The structure is considered linear before and after damage, therefore, the modal
superposition technique is applied. Thus, the dynamic response is obtained by the well-known equation of motion

OTMPY (t) + PTCPY(t) + PTKDY(t) = TP(t) (1)

where M, C, and K are the mass, damping and stiffness matrices of the structure, Y, Y, and Y the generalized

coordinates of the acceleration, velocity and displacement vectors in the direction of the applied force and P(t) is
the excitation forced.

Then, applying the orthogonality properties of the modal shapes ®T normalized in relation to the mass matrix

dTMP =1
dTCO = 2¢,0, 2
OTKD = 0’0"™MP

By introducing eqs. (@) into eq. (I, the equation of motion for each vibration mode i, from i=1 to i=n, can
be expressed as

Yi(t) + 2&:0,Yi(1) + 0} Y;(t) = ®! P(r) 3)
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Then, by solving eq. (3) using the Runge—Kautta fourth order integration method, the acceleration, velocity,
and displacement at the required points of the structure are obtained, respectively, as

n n n
Ve=) YO, V=) YO, ve=) YP 4)
i=1 i=1 i=1

Finally, the FRF is estimated with the help of MATLAB functions as

(&)

1
FRF = ‘ (Svp ®
Svp

1
>®\/§vv®

SPP

where Syp, is the cross power spectral density of the acceleration response to the excitation force, and Syy, Spp
are the power spectral densities of the acceleration and force, respectively.

4 Training dataset

The computational model presented in the previous section is first adjusted to match the experimentally
measured FRFs. Figure [3]shows the numerical-experimental comparison of FRFs.
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Figure 3. Comparison between numerical and experimental FRFs.

Then, the adjusted model is used to simulate the system response for the different damage scenarios. The
damage is introduced in the model through the local reduction of the cross-sectional area (A). Thus, a reduction
coefficient r that varies from 0-1, where r =0 represents a completely lost cross-sectional area and r =1 the condi-
tion of the healthy structure is used. This type of penalization coefficient is adopted based on the literature (Ritto
and Rochinha [12]). In the local stiffness matrix (corresponding damaged element), the value of r is multiplied by
A.

In this study, two reduction levels of cross-sectional area are considered, 30 % and 70 %. When 30% damage
is considered in a certain element, r assumes a value of 0.7 (1-0.30) and when 70% damage is considered r assumes
a value of 0.3 (1-0.70). Thus, the local stiffness matrix is modified. It is important to highlight that, although
the reduction of cross-sectional area in the real beam is much smaller, the used of a simplified unidimensional
FE model justifies the adopted values. The focus of this study is to evaluate the potential of machine learning
approaches for damage detection based on a simplified model, which consumes much less simulation time.

The FRFs of each damage scenario are calculated and normalized by means and standard deviation. The
normalized FRF amplitudes of the three first vibration modes are used as damage indexes. To consider in some
form uncertainties or noise coming from different sources, it is assumed that the normalized amplitudes are random
variables that follow a normal distribution, with mean equal to the nominal value and a certain standard deviation.
Two different standard deviations values are considered, 1% and 2 % of nominal values, which are referred to
1% uncertainty and 2 % uncertainty henceforth. Thus. the FRF amplitudes are randomly generated within these
distributions.

Multiple simulations are performed to construct several datasets to train machine learning classifiers. Differ-
ent datasets are constructed, dataset 1 considers 30% reduction of cross-sectional area with 1% uncertainty, dataset
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2 considers 30% reduction of cross-sectional area and 2% uncertainty, dataset 3 considers 70% reduction of cross-
sectional area with 1% uncertainty, dataset 4 consider 70% reduction of cross-sectional area with 2% uncertainty,
and dataset 5 considers all data. Each dataset comprises 50 random samples of each of the nine damage scenarios.
At first instance, it is considered nine damage levels, from one to nine damaged elements. These are labeled as
1%,2%...9% damage. Then, to improve the classification process it is considered only three damage levels, labeled
as 1% up to three damaged elements, 2% up to six damaged elements, and 3% up to nine damaged elements. In
total, ten different datasets are used to train the machine learning classifiers (see Tab. [2). All samples of damaged
and undamaged data are presented in Fig. ] organized to consider nine damage levels (Fig. #h) and three damage
levels (Fig. Ab).
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Figure 4. Damaged and undamaged samples generated from numerical simulations, a) dataset considering 9 dam-
age levels and b) dataset considering 3 damage levels.

The main goals of this damage detection process are to identify the presence and to quantify the level of
damage according to the number of damaged elements. For this purpose, several well-known classifiers are tested
with the help of the statistics and machine learning toolbox from MATLAB, using the constructed datasets. Three
types of classifiers are evaluated, which are Decision Tree (DT), Support Vector Machine (SVM), and K-Nearest
Neighbors (KNN). A brief description of each algorithm is provided next.

DT is a decision support hierarchical model that uses a tree-like model of decisions and their possible con-
sequences. The goal is to create a model that predicts the value of a target variable by learning simple decision
rules inferred from the data features. A tree can be seen as a piecewise constant approximation. The capabilities
of decision tree ensembles for structural damage detection have been demonstrated in Mariniello et al. [13].

SVM method is used to classify the samples by finding an optimal hyperplane in an n-dimensional space
that distinctly classifies the data points. In the hyperplanes that can be classified, there are two hyperplanes that
are in contact with two respective classes of data. The optimal hyperplane is between them and is the one that
represents the largest separation or margin between the two classes (Hou et al. [14]). SVM maps the sample data
to a high dimensional space through a kernel function takes low-dimensional input space and transforms it into
higher-dimensional space.

The KNN algorithm is typically used as a classification algorithm. It assumes that similar things exist in close
proximity. In other words, similar things are near to each other. The output of KNN determines, from the k-most
similar instances, the class with the highest frequency. This is done on the basis of a majority vote, i.e., by having
each instance vote for its class. The class with the highest number of votes is the predicted class.

5 Results and discussion

Table [2] shows the accuracy obtained with tested classifiers for each of the training datasets, which is calcu-
lated as the number of correct predictions out of total samples. Here, 5-fold cross validation was employed.

It can be observed in Tab. [2] that, on average, SVM (quadratic) is the classifier that best performed in terms
of accuracy. The best performance using numerical data is obtained considering three damage levels, 70 % of area
reduction and 1 % of uncertainty. It can also be observed that, as expected, the larger the level of uncertainty the
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Table 2. Accuracy obtained by different classifiers for each of the training dataset.

Classifier Accuracy (9 damage levels)
30% area red.  30% area red. 70% area red. 70% area red.

1% uncert. 2% uncert. 1% uncert. 2% uncert. all data
Decision Tree 64.0 % 36.0 % 84.6 % 34.8 % 52.8 %
SVM (linear) 84.0 % 514 % 97.8 % 50.0 % 57.5 %
SVM (quadratic) 83.0 % 49.2 % 97.0 % 46.2 % 65.2 %
SVM (cubic) 78.4 % 454 % 96.8 % 43.4 % 67.0 %
SVM (fine gaussian) 49.8 % 26.8 % 82.4 % 25.0 % 51.1 %
SVM (medium gaussian) 85.0 % 49.6 % 97.6 % 48.8 % 68.2 %
SVM (coarse gaussian) 81.2% 51.8 % 97.0 % 51.8 % 54.8 %
KNN (fine) 73.4% 40.0 % 91.6 % 38.4 % 58.6 %
KNN (medium) 77.8% 43.4 % 94.6 % 43.8 % 63.7 %
KNN (coarse) 81.0 % 472 % 81.2 % 46.2 % 63.6 %

Accuracy (3 damage levels)

Decision Tree 85.2 % 57.8 % 90.0% 75.4 % 73.5 %
SVM (linear) 96.2 % 76.2 % 96.8 % 83.6 % 71.0 %
SVM (quadratic) 95.8 % 76.6 % 99.4 % 88.4 % 77.3 %
SVM (cubic) 95.0 % 75.2 % 98.0 % 87.6 % 80.4 %
SVM (fine gaussian) 65.2 % 53.2 % 88.4 % 64.8% 69.5 %
SVM (medium gaussian) 96.6 % 79.0 % 99.2 % 89.8 % 81.3 %
SVM (coarse gaussian) 94.8% 75.2 % 96.4 % 84.0 % 70.0 %
KNN (fine) 95.0% 69.0 % 98.4 % 82.6 % 76.8 %
KNN (medium) 93.0% 72.6 % 97.6 % 87.4 % 80.8 %
KNN (coarse) 84.2 % 68.0 % 77.6 % 71.2 % 78.8 %

worse the accuracy, and the larger the cross-sectional area reduction the better the accuracy.

Finally, to test the prediction capability of trained classifiers with new data, the normalized FRF amplitudes
from experimental tests are used as input to evaluate the prediction of those classifiers with the higher accuracy
for each dataset. In other words, the classifier that best performed for each of the training datasets is used to make
predictions using the experimentally measured FRFs. As a result, nine out of ten classifiers succeed in identifying
the presence of damage. However, the performance is low in quantifying the level of damage. Classification results
of the classifier that provided the best predictions are shown in Tab. [3] These were obtained using SVM (medium
gaussian), trained with dataset using all data and 2 % of uncertainty, and considering three damage levels in the
classification process. It can be seen in Tab. [3 that six data samples are correctly classified out of ten considered,
which means 60 % of accuracy.

Table 3. The best prediction results using experimental data as input (Medium Gaussian SVM classifier).

Exp. data samples True Predicted Label
1 undamaged  undamaged  correct
2 1% damage 2% damage  wrong
3 1% damage 1% damage  correct
4 1% damage 1% damage  correct
5 2% damage 2% damage  correct
6 2% damage 2% damage  correct
7 2% damage 2% damage  correct
8 3% damage 2% damage  wrong
9 3% damage 2% damage  wrong

—_
(=]

3% damage 2% damage  wrong

6 Conclusions

In this paper, numerical studies and experimental tests were conducted for structural damage identification
and quantification based on FRFs. The results confirm that normalized FRF amplitudes can be utilized as dam-
age indexes. Uncertainties were introduced considering FRF amplitudes as random variables. Numerical results
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showed that the larger the level of uncertainty the lower the accuracy. On the other hand, the larger the reduction
in the cross-sectional area the higher the accuracy. SVM (quadratic) was the classifier that best performed using
numerical data, with 99,4 % of accuracy. Also, experimental FRF data were used as input samples to validate the
trained classifiers. The results obtained demonstrated that even a simplified model, that represents the real structure
to the extent possible, is able to detect the presence of damage. However, to quantify the level of damage more
sophisticated computational models are needed, since the best accuracy obtained was 60 %, and considering three
damage levels only in the classification process. In addition, the classifier with higher accuracy from numerical
studies did not show the best performance in classifying experimental damage scenarios properly. This suggests
that when simplified numerical models are used, it is important to consider uncertainties to improve the prediction
capability.
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