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Abstract. This study presents an educational software called the Truss Positional Finite Element Method Program
(TPFEM), designed for analyzing truss structures using the Finite Element Method based on Positions (FEMP).
Unlike the conventional Finite Element Method (FEM), which uses displacements as degrees of freedom, FEMP
employs the nodal positions of discretized elements. This positional approach naturally and effectively incorpo-
rates geometric nonlinearity into its formulation, simplifying the nonlinear geometric analysis of structures. The
developed application aims to enhance the teaching and learning process of FEMP for truss structures, making the
experience more dynamic, user-friendly, and engaging. The educational program offers a range of functionalities,
allowing users to model multiple truss structures simultaneously through an intuitive multi-window interface and
conduct both static and dynamic analyses of truss structures.

Keywords: Educational Computational Program, Finite Element Method, Nonlinear geometric analysis, Truss
structures.

1 Introduction

Educational software plays a crucial role in the teaching and learning process, providing interactive tools and
dynamic resources that complement traditional education. These programs facilitate the understanding of complex
concepts, promote autonomous and personalized learning, and increase student engagement. In the context of
teaching numerical methods and engineering, Finite Element Method (FEM) programs are especially important.

FEM is a fundamental technique for analyzing complex problems in engineering and physics, allowing the
solution of partial differential equations that describe phenomena such as stress distribution in structures, heat
transfer, and fluid dynamics. Educational software that incorporates FEM offers students the opportunity to visu-
alize and interact with these analyses, enhancing their theoretical and practical understanding. They also facilitate
detailed simulations and experimentation with different parameters, preparing students to face real-world chal-
lenges in a professional environment. Thus, the use of FEM software in education not only enriches learning but
also promotes a more robust and practical training, aligned with the current demands of industry and scientific
research.

This work presents an educational program for the static and dynamic analysis of truss structures using the
Finite Element Method based on Positions (FEMP), also known as the Positional Finite Element Method. The
software, named the Truss Positional Finite Element Method Program (TPFEM), integrates a hybrid code. The
graphical interface and data structure for creating geometric models were developed in Python using the PyQt
[1], PyOpenGL [2], and HETOOL [3] libraries. The static and dynamic analyses are then performed by a code
developed in FORTRAN, utilizing the FEMP method.

The integration of FORTRAN code for conducting static and dynamic analyses ensures precise and robust
calculations. Furthermore, using FEMP as a methodological foundation simplifies the understanding of complex
concepts, promoting deeper and more practical learning. This approach also innovatively facilitates the natural
and efficient integration of geometric nonlinearities. TPFEM enriches the educational experience by increasing
interactivity and engagement, while also preparing students to grasp the intricate nonlinear geometric behavior of
truss structures.
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2 HETOOL library

This study employs the HETOOL library, developed in Python by Bomfim et al. [3], to construct the edu-
cational program TPFEM developed in this work. HETOOL represents an innovative object-oriented framework
designed for interactive 2-D geometric modeling, built on the well-established Half-Edge Data Structure devel-
oped by Mäntylä [4]. The Half-Edge data structure is based on the concept of a half-edge, which stores significant
topological information. Conceptually, a half-edge originates from the subdivision of an edge into two oriented
semi-edges within incident loops having opposite directions. Most topological operations rely on information
stored in half-edges.

The Half-Edge data structure consists of several key topological elements: solids (S), faces (F), loops (L),
edges (E), half-edges (HE), and vertices (V). Specific operators are employed to modify it in a topologically
consistent manner, guided by the Euler equation: V − E + 2F − L − 2 = 0. This equation balances the counts
of each topological element within a solid. Operators based on this equation are known as Euler Operators, as
described by Hoffman [5], allowing for the creation or modification of closed surfaces by adding or removing
faces, edges, and vertices.

HETOOL is designed to efficiently manage general 2-D models and planar subdivisions commonly used in
scientific and engineering applications. Featuring a dynamic data structure, this library automates the seamless
integration of geometric elements and provides powerful functionalities that enable users to harness its capabilities
without needing an extensive grasp of underlying topological principles. HETOOL has been applied in several
studies by Bomfim et al. [6], Soares et al. [7], Peixoto et al. [8], Peixoto and Rangel [9], and Peixoto [10]. For
more detailed information about HETOOL, refer to Bomfim [11].

3 Finite Element Method based on Positions

The FEMP, originally described by Bonet et al. [12] Coda and Greco [13], is a numerical method used to
discretize a domain to find approximate solutions for nonlinear equations derived from the variation of mechanical
potential energy. Unlike the traditional FEM, which uses displacements as degrees of freedom, FEMP uses the
nodal positions of the discretized elements. This method is based on a total Lagrangian formulation, meaning that
the current configuration of the bodies is defined from the initial configuration. The following sections provide a
summary of FEMP, with further details available in the works of Coda [14], Paccola and Coda [15], Ramos et al.
[16], Paccola et al. [17], Sampaio et al. [18].

3.1 Kinematics and positional mapping

The change in the shape of a generic body typically occurs from an initial configuration B0 to a current
configuration B, described by a function f⃗ , known as the configuration change function. This function f⃗ is
invertible, with its inverse denoted as g⃗. The initial configuration (B0) is defined by the coordinates x1, x2, x3,
while the current configuration (B) is characterized by the coordinates y1, y2, y3. By considering two infinitesimal
vectors dx⃗ and dy⃗, within B0 and B, one can express the configuration change function f⃗ , evaluated at a point
(x1, x2, x3) and in the neighborhood of (x0

1, x
0
2, x

0
3), using differential calculus as follows:

f⃗ (x1, x2, x3) = f⃗
(
x0
1, x

0
2, x

0
3

)
+∇ f⃗ · dx⃗. (1)

By taking the difference between f⃗(x1, x2, x3) and f⃗(x0
1, x

0
2, x

0
3), one arrives at the following expression:

dy⃗ = df⃗ = f⃗ (x1, x2, x3)− f⃗
(
x0
1, x

0
2, x

0
3

)
= ∇ f⃗ · dx⃗ = A · dx⃗ (2)

where the gradient of the change of the configuration function is defined as A.

3.2 Saint-Venant-Kirchhoff constitutive law

To describe a geometrically nonlinear formulation, an objective strain measure is necessary, one that can
register zero strain for rigid body translations and rotations. The Green-Lagrange strain is such an objective and
Lagrangian measure, defined by the following expression:
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E =
1

2

(
AT ·A− I

)
=

1

2
(C− I) (3)

where C is the second-order symmetric tensor defined as the right Cauchy-Green stretch tensor, and I is the
second-order identity tensor.

In this study, the Saint-Venant-Kirchhoff (SVK) constitutive model is utilized for the finite elements, which
is appropriate for large displacements and moderate strains. This model defines a linear relationship between the
second Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor. Consequently, the specific strain energy
is expressed as:

ue(E) =
1

2
E : C : E (4)

where C is the elastic constitutive tensor.

3.3 Principle of Stationarity of Mechanical Energy

According to the Principle of Stationarity of Mechanical Energy, the mechanical equilibrium of a body occurs
when the variation of its mechanical potential energy is zero. The functional form of the mechanical energy of a
solid can be expressed as:

Π = P+ U+K (5)

where P is the work of external forces, U is the internal strain energy, and K is the kinetic energy.
In the FEMP, positions are considered as unknowns, which are utilized to calculate variations. Hence, for any

given body, one can express the variation of the mechanical energy functional concerning positions as:

δΠ =

∫
V0

ρ0
⃗̈Y · δY⃗ dV0 −

∫
V0

b⃗0 · δY⃗ dV0 −
∫
A0

p⃗0 · δY⃗ dA0 +

∫
V0

S : δE dV0 = 0 (6)

where b⃗0 is the volume force vector in the initial configuration, p⃗0 is the surface force vector in the initial config-
uration, V0 is the initial volume of the solid, A0 is the initial surface area of the solid, and ρ0 is the initial mass
density.

3.4 Solution strategy

The FEMP employs a geometrically exact approach centered on positions, resulting in a set of nonlinear
equations. These equations are solved using the Newton-Raphson method [19], where the current position serves
as an initial guess, generating a imbalance among the internal force vectors F int

i , external forces F ext
i , and inertial

forces F iner
i . This imbalance is represented by the residual vector gi, which is derived from eq. (5). Thus, one can

obtain:

gi =
∂Π

∂Yi
=

∂U
∂Yi

+
∂P
∂Yi

+
∂K
∂Yi

= F int
i − F ext

i + F iner
i ̸= 0i. (7)

The Newton-Raphson method is employed to determine the current configuration of the structure, aiming to
minimize the mechanical imbalance vector towards zero. Assuming the components of gi are continuous functions
near the solution and starting with a provisional solution Y⃗ 0 close to the exact solution, the vector gi can be
approximated by a truncated Taylor series up to the first order as:
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gi(Y⃗ ) = gi(Y⃗
0) +

∂gi
∂Yj

∣∣∣∣
Y⃗ 0

∆Yj ≈ 0 (8)

where ∆Yj denotes the correction of the current positions. Equation (8) can be rewritten as:

∆Yj =

(
∂gi
∂Yj

∣∣∣∣
Y⃗ 0

)−1

gi(Y⃗
0) = − (Hij)

−1
gi(Y⃗

0) (9)

where Hij is called the Hessian matrix or tangent stiffness of the problem for the trial position.
The trial solution is then refined at each iteration by Yj = Y 0

j + ∆Yj . Subsequently, the current position
values and eq. (9) are utilized to compute a new adjustment. This iterative process continues until the correction
becomes smaller than a predefined error tolerance (tol). The stopping criterion employed in this study compares
the magnitude of the current position correction (∆Y⃗ ) to the magnitude of the initial position vector (X⃗), expressed
as ∥∆Y⃗ ∥

∥X⃗∥
< tol.

4 Truss Positional Finite Element Method Program (TPFEM)

The developed application aims to enhance the teaching-learning process of the FEMP for truss structures,
making the learning experience more dynamic, user-friendly, and engaging. The TPFEM allows users to model
multiple truss structures simultaneously through an intuitive multi-window interface, where windows can be easily
added or removed. Users can conveniently save model information in JSON file format.

The program’s interface, as shown in Fig. 1, showcases all the application’s functionalities, including manag-
ing window visualization limits, creating and deleting elements, and saving and loading models. Additionally, the
program allows for the application of boundary conditions, such as constraints on the nodal displacements of the
structure and the application of concentrated loads. The subsequent figures demonstrate the main functionalities
and results achievable with TPFEM. For more detailed information regarding the parameters and dimensions of
the represented structures, refer to Coda [14].

Figure 1. Initial interface

Figure 2 presents the static analysis of the structure shown in Fig. 1 using the FEMP. This figure features a
color scale that correlates the normal stress values for each bar of the structure. Additionally, the response at each
load step can be visualized, with the result for load step 94 provided as an example.
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Figure 2. Static geometric nonlinear analysis of a truss structure

Figure 3 presents a dynamic analysis of free vibration (i.e., considering that the structure is not subjected to
any loads) to obtain the natural frequencies of vibration and the time step ∆t that will be used in the dynamic
analysis of the truss structure.

Figure 3. Geometric nonlinear analysis of free vibration of a truss structure

Figure 4 shows the dynamic analysis of the structure previously analyzed in Fig. 3, using a time step cor-
responding to the fifth natural vibration of ∆t = 1.6 seconds and analyzing 1000 time steps as illustrated. The
deformed configuration presented corresponds to time step 34.

Furthermore, in Fig. 4, positioned on the right side of the program interface, there is a ”Plot” button enabling
users to select a specific node and displacement direction. This feature generates a graph illustrating displacement
over time t during dynamic analysis. For static analyses, the program generates force versus displacement graphs
based on user-defined nodes and directions.
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Figure 4. Dynamic geometric nonlinear analysis of a truss structure

Figure 5 presents the displacement graph in the vertical direction (direction 2) of node 19, highlighted in red
in Fig. 4 following selection via mouse click, plotted against time t. This node corresponds to the location where
the concentrated load, positioned farthest to the left, was applied.

Figure 5. Structural response of the dynamic geometric nonlinear analysis of a truss structure

5 Conclusions

This study introduces the Truss Positional Finite Element Method Program (TPFEM), a software designed
to enhance the teaching and learning of structural analysis using the Finite Element Method based on Positions
(FEMP). By offering an intuitive interface and robust analytical capabilities, TPFEM not only facilitates the ex-
ploration of geometric nonlinearity in truss structures but also prepares students with practical skills essential for
tackling real-world engineering challenges. This integration of advanced educational software underscores its piv-
otal role in bridging theoretical knowledge with hands-on application, thereby ensuring a more comprehensive
educational experience aligned with industry needs and scientific advancements.

Acknowledgements. This work was supported by the Conselho Nacional de Desenvolvimento Cientı́fico e Tec-

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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