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Abstract. This paper presents an efficient computational framework for analyzing trusses subject to geometric 

nonlinearities using common Python libraries for numerical optimization, scipy, and graphical analysis, matplotlib. 

We will describe the deformed configuration of the lattice and its internal energy based on the nodal displacements. 

For a better result, we then evaluated some available numerical optimization libraries to select the most appropriate 

method for our problem, thus avoiding the explicit derivation of equilibrium equations and tangent matrices. The 

network equilibrium is defined as the configuration with minimum potential energy and this is taken as the 

objective function of the optimization algorithm. Finally, we conclude with numerical examples comparing our 

approach with classical solutions based on a system of nonlinear equations. The proposed framework offers an 

interesting alternative for solving the nonlinear equilibrium problem, with particular potential for educational 

purposes and code prototyping. Although our approach may not optimize computational runtime, it significantly 

simplifies coding time, thereby improving accessibility and usability in engineering applications. 

Keywords: python programming language; scipy; geometrically nonlinear structural analysis; energy methods; 

numerical optimization. 

1  Introduction 

Over the years, computational methods have emerged to solve long-standing engineering problems. One of 

these challenges is the analysis of structures with large strains and displacements. When structures are analyzed 

linearly, the model may not accurately represent reality. Therefore, nonlinear computational mechanics is essential 

to obtain accurate results. In this article, the analysis of trusses subject to geometrical nonlinearity was explored 

using Python, stating the minimal energy principle as an optimization problem. 

Most methods for geometrically nonlinear analysis rely on energy methods such as the Principle of Virtual 

Works or The Principle of Least Work to algebraically obtain the equilibrium equations and some sort of tangent 

matrix. The objective of the article is to avoid explicit derivatives and matrices and at the same time obtain results 

close to reality. For this, Python optimization libraries were used. Specifically, SciPy with the Nelder-Mead and 

BFGS methods, which iteratively finds the minimum values of a given numerical function. 

The approach involves constructing a truss that initially receives assumed displacements. Through iterations, 

it refines these displacements based on the influence of applied loads. This analysis aligns with the concept of 

minimizing potential energy to find equilibrium. 
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2  Literature review 

2.1 External work and strain energy due to normal stress 

Before discussing strain energy, it is essential to define the concept of work. According to Hibbeler [1], 

considering an axial force gradually applied to the end of a bar and assuming the material behaves in a linear and 

elastic manner, the area under the force-displacement graph represents the work done by this force. Therefore, 

 𝑈 =
1

2
𝑃𝛥  

Thus, work is stored in the bar in the form of strain energy. Considering initially an infinitesimal element 

subjected to an axial load of 𝑑𝐹𝑧 =  𝜎𝑧𝑑𝑥𝑑𝑦, we have the following expression: 

 𝑑𝑈𝑖𝑛𝑡 =
1

2
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Applying Hooke's law, given that the analysis is geometrically nonlinear 

 𝑈𝑖𝑛𝑡 = ∫
𝜎𝑧
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For a prismatic bar of constant cross-sectional area 𝐴 and length 𝐿, 

 𝑈𝑖𝑛𝑡 = ∫
𝑁2

2𝐸𝐴2 𝐴 𝑑𝑧
𝐿

0

 =
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Thus, the sum of the internal energy of each bar, together with the energy due to the work done by external 

loads, represented by 𝑈𝑒𝑥𝑡,𝑗 = 𝐹𝑗 ⋅ 𝑢𝑗, gives us the total energy of the system.  

 𝑈𝑇 = ∑ 𝑈𝑖𝑛𝑡,𝑖
𝑛
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In this case, the total energy will be our objective function to be optimized (minimized). 

2.2 Principle of Least Work 

As described in the previous section, the total potential energy in a system is composed by the internal (strain) 

energy reduced by the external energy spent by the loads applied to the structure. The Principle of Least Work or 

Principle of Minimum Potential Energy states that a structure is at a static equilibrium state when the total potential 

energy is at its minimum [2]. 

2.3 Optimization problem 

Using the concept of minimum total energy of a truss, we can define the proposed question as an optimization 

problem. 

The total energy of a truss depends on the axial strain energy and the energy due to external loads applied at 

the nodes. A system is in equilibrium when its total energy is minimized. Therefore, by minimizing the total 

energy, we obtain an equilibrated structure. From the displacements, we can determine the internal forces of each 

bar and, consequently, the support reactions without using the classical equilibrium equations of Vector 

Mechanics. 

To solve this problem, we use nonlinear optimization methods, as the objective function is a nonlinear 

function of the design variables. Additionally, we use deterministic methods, based on the objective function 

derivatives. Nevertheless, these derivatives are not explicitly obtained, their numerical evaluation is intrinsic to 

the numerical optimization library. It is important to note that the mathematical model has no constraints, as it only 

considers the free displacements of the nodes. 

Thus, this is a problem that is: 

• Single-objective (minimization of total energy); 

• Multidimensional (the decision variables are the nodal displacements); 

• Unconstrained; 
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• Deterministic; 

• Continuous. 

SciPy (Virtanen et al [4]) is a collaborative open-source Python library that provides many algorithms useful 

for scientific computation. Among its utilities, SciPy provides highly-enhanced implementations of numerical 

optimization algorithms including Nelder-Mead simplex and Broyden–Fletcher–Goldfarb–Shanno (BFGS). 

3  Methodology 

3.1 Numerical formulation 

To test the hypothesis in the Principle of Least Work, we make use of plane trusses, as they are easily 

implemented, and the concepts are readily extended for more complex structures. The movement of a plane truss 

can be described by the displacement 𝛥 of its nodes, gathered in vector 𝛥. Let each truss element (bar) have end 

nodes 𝑖, 𝑗, with reference, stress-free, positions 𝑥𝑖
𝑟 , 𝑦𝑖

𝑟 , 𝑥𝑗
𝑟 , 𝑦𝑗

𝑟 . After the loads are imposed and equilibrium is 

reached, the nodes assumed deformed positions 𝑥𝑖 , 𝑦𝑖 , 𝑥𝑗 , 𝑦𝑗. The reference and deformed lengths of the bar are, 

then, 

𝐿𝑟 = √(𝑥𝑗
𝑟 − 𝑥𝑖

𝑟)
2

+ (𝑦𝑗
𝑟 − 𝑦𝑖

𝑟)
2

 

𝐿(𝛥) = √(𝑥𝑗 − 𝑥𝑖)
2

+ (𝑦𝑗 − 𝑦𝑖)
2

 

It is important to notice that 𝐿 depends on 𝛥 in a highly nonlinear manner. Assuming that each rod is of 

constant area and material, its deformation, strain, normal stress and internal force are easily derived to be 

𝛿 = 𝐿 − 𝐿𝑟; 𝜀 =
𝛿

𝐿𝑟
; 𝜎 = 𝐸𝜀; 𝑁 = 𝐴𝜎. 

Then, the internal energy of a deformed truss bar is 

𝑈𝑖𝑛𝑡,𝑖 =
𝐸

2𝐿𝑟
𝛿2. 

As previously stated, the total strain energy of the structure will be the sum of 𝑈𝑖𝑛𝑡,𝑖 over the truss bars 

reduced by the spent energy of the external loads. 

3.2 Computational implementation 

The computational implementation began by choosing the type of optimization. The idea was to work with a 

library that did not use explicit derivatives, as mentioned in the Scipy introduction, and specifically the Nelder-

Mead method. 

After this, a reference truss was assembled in Ftool (Martha [5]), information was provided about the nodes, 

the connectors (bars), the physical properties of the truss: Modulus of elasticity, area of each connector. The length 

of each bar was then noted. 

The Python implementation defined a function with nodal displacements as inputs and the total system energy 

as the scalar output. Truss properties and nodal loads are defined inside the computational function. In each 

evaluation, the nodal displacements are used to compute each bar’s deformation, strain, internal force and strain 

energy and the work done by external forces. The system energy is defined as the difference between the internal 

and external work. 

This energy function is then feed to Scipy’s optimization algorithms, with nodal displacements as design 

variables and system energy as the objective function. The optimization algorithm makes use of numerical 

derivatives in an iterative procedure to update the design variables (nodal displacements). If convergence is 

achieved, the position of minimal energy is the solution of the algorithm and thus the equilibrium position. If 

reaction values, internal forces or other quantities are needed, they can be derived in a post-processing phase. 
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4  Numerical example 

4.1 Structure description 

As an example of the solution presented, a truss was created consisting of 3 nodes, and 2 bars connecting the 

nodes, 1 load was also applied at different intensities to the highest node, node 2. Fig. 1 depicts the truss with its 

loaded node as a circle and the restricted nodes as squares. 

 

Figure 1: Two-bar truss in the algorithm. 

This benchmark problem was addressed by many authors, Segnini [3] among them, whose values are taken 

for comparison. She used 2 bars with modulus of elasticity, 𝐸 =  206 840 𝑀𝑃𝑎, and cross-sectional area, 𝐴𝑠 =

 6.4516 𝑐𝑚2. Each bar has a length of 2.54 𝑚 and makes an angle of β = 30° with the horizontal axis. The load is 

applied on the top node in increments of 889,644 𝑘𝑁 up to 8 006,796 𝑘𝑁. 

The optimization problem is run at each iteration, as the objective function changes for each load level. The 

initial guess is always taken as zero, although a better practice of using the previous load-step result as an initial 

guess should be investigated. The vertical displacement for the top node is take as the result for comparison 

between the optimization algorithm and the benchmark solution. 

4.2 Validation of the Structural Model 

The vertical displacement of the free node is compared, for each load level, to the results obtained by Segnini 

[3] based on a geometrically exact formulation solved using Newton-Raphson’s method. For reference, a linear 

solution for the last load value is also included in Fig. 2. 
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Figure 2: Comparison of results. 

Table 1 includes the results for each load step for the linear analysis, the optimization approach and the exact 

equilibrium solution by Segnini [3]. 

Table 1. Comparison of results (displacement in meters) 

Force [N] FTool Algorithm Segnini [3] 

0 0,000 0,0000 0,0000 

889 644 0,0339 0,0310 0,0350 

1 779 288 0,0678 0,0650 0,0720 

2 668 932 0,102 0,100 0,113 

3 558 576 0,136 0,139 0,158 

4 448 220 0,169 0,181 0,208 

5 337 864 0,203 0,229 0,267 

6 227 508 0,237 2,724 0,342 

7 117 152 0,271 2,747 0,461 

8 006 796 0,305 2,770 2,790 

5  Conclusions 

The results reported on Table 1 and Fig. 2 show an agreement between the two nonlinear formulations shown 

as well as an expected difference to the linear model used by FTool. 

The difference between the optimization and the equilibrium approaches are probably due to the numerical 

precision of the optimization algorithm. This initial stage explored the optimization library in its simplest form, 

with no regard to fine tuning error estimates or step sizes. The results prove that such parameters must be analyzed 

for better suited results. 

The major differences noted on the higher load steps allude to the snap-through nature of the structure in the 

example. It is noted that after a critical load the bars will suffer major strains, and the top node will descent bellow 

the supports. By then, the truss bars will be in tension rather than in compression. As noted in Section 4.1, the 

optimization algorithm used a zero estimate for every load-step. For the loads above 6 000 𝑘𝑁, the first 

optimization steps probably exceeded the threshold and converged for the snapped configuration. 

Better results should arise from the use of the previous converged displacement as the initial guess for the 

next load-step, but the detailed load-displacement curve (with the descending load) should only be achieved by 

continuation methods. 

Despite the need for better exploration of the optimization parameters, results show that formulating the 

nonlinear equilibrium as an optimization problem and solving this problem using a pure optimization library is 

possible and can be used for further development. 
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