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Abstract. Magneto Rheological Elastomers (MRE) are composite intelligent materials, which can substantially
change their viscoelastic properties due to their high magneto-sensitivity in response to different regimes of exter-
nal magnetic field. Under the influence of a magnetic field, both storage shear and loss factor of MREs increase,
this field-induced phenomenon is referred to as the magnetorheological effect. The application of MR materials
demonstrates great potential for several areas, as indicates the increasing number of patents registered in the last
decade. This research is included in a line aimed to develop MRE devices for structural vibrations’ control, ex-
ploring the magnetorheological effect and its capacity to promote gains in viscoelastic properties, thus enabling
changes of relevant magnitudes in structural systems, such as the natural frequency and damping ratio. This adap-
tive behavior can be studied by the analysis of qualitative numerical simulations, this study proposes to investigate
the effectiveness of MRE devices on wind induced aeroelastic oscillations (galloping equation), the results are
obtained by the Multiple Scale Method and numerical integrations, showing a trajectory suppression on the phase-
plane of limit cycles to focal points, as well as a three-fold change in the critical speed and alterations on the shape
of the Hopf’s bifurcation diagram.
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1 Introduction

EMRs are composite materials composed of a solid elastomeric matrix and a dispersion of magnetizable
particles such as silicone rubber and carbonyl iron, respectively [1].

The development of numerical simulations that validate the use of EMR materials in vibration control de-
vices in structures is essential for the development of innovative technologies, and is a developing area rich in
opportunities.

Within the scope of numerical simulations with EMR dampers, research explores their application in several
situations: from the control of seismic effects to the development of finite element models for application in spatial
structures [2–4]

1.1 The Magento Rheological Effect

Research on similar Magnetorheological (MR) materials spans approximately seven decades [5]. Composites
manufactured with a fluid matrix and magnetizable particles present lower crosslinking density, which allows the
movement of the charge in an external magnetic field, forming columnar structures aligned with the equipotentials
of an applied external magnetic field, as seen in Figure 1 [6], which illustrates the magnetorheological effect, de-
fined by the tendency of these particles to align, causing changes in the samples the intrinsic viscoelastic properties,
increasing both storage and loss modulus.

1.2 Dynamic characterization

Regarding sample characterization, it is necessary to adopt a mathematical physical model to obtain vis-
coelastic parameters (viscosity and shear modulus). Carvalho (2023) [7] obtained results with a margin of error of
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Figure 1. Alignment of magnetizable particles in MR fluids. (a) Null field. (b) Applied external field

3.19%, using the Kelvin Voigt model, pointing out that the dynamic behavior of EMR materials is dependent on
the sampling frequency, applied magnetic field and controlled input parameters (displacement amplitude or force).
Particularly, for each stress-strain regime to which the material is subjected, a different response is obtained, the
different responses translate into adjusted equations for interpolation of results within the established acquisition
limits (Equation 1 and Equation 2), with magnetic charge concentration of 33% by volume, sampling frequency f
from 10 Hz to 60 Hz, variable magnetic field B from 0.00 T to 0.35 T, and controlled stress T from 1.05 kPa to
5.25 kPa.

η(f,B, τ) =

(0.2381T − 1.25) (3673.0B5 − 36.65B4 f − 1511.0B4 + 0.2424B3 f2 + 5.956B3 f + 173.1B3 + 0.0004304B2 f3−

0.1869B2 f2 + 7.608B2 f − 113.8B2 − 0.00001659B f4 + 0.002739B f3 − 0.147B f2 + 3.247B f − 28.57B + 7.409 10−8 f5

− 0.00001436 f4 + 0.001073 f3 − 0.03916 f2 + 0.7284 f − 6.59) + (0.2381T − 0.25) (−4162.0B5 − 1.329B4 f + 3764.0B4

+ 0.006145B3 f2 + 1.494B3 f − 1239.0B3 − 0.00007538B2 f3 + 0.01145B2 f2 − 1.346B2 f + 196.9B2 + 3.451 10−6 B f4

− 0.0006253Bf3 + 0.04063B f2 − 1.082B f + 4.215B − 2.46 10−8 f5 + 4.711 10−6 f4 − 0.0003526 f3 + 0.01322 f2

− 0.2678 f + 3.01)
(1)

Gx(f,B, τ) =

(0.2381T − 0.25) (−1943.0B5 + 0.3606B4 f + 1716.0B4 − 0.001559B3 f2 − 0.2479B3 f − 529.2B3 + 0.00001139B2 f3

− 0.0001621B2 f2 + 0.06408B2 f + 72.87B2 + 1.119 10−7 B f4 − 0.00001031B f3 − 0.0001565B f2 + 0.02358B f − 2.437B

+ 1.132 10−9 f5 − 2.473 10−7 f4 + 0.00002014 f3 − 0.0007694 f2 + 0.01439 f + 0.3403)− 1.0 (0.2381T − 1.25) (6286.0B5

+ 0.7622B4 f − 5734.0B4 − 0.003087B3 f2 + 0.1748B3 f + 1731.0B3 + 0.0001991B2 f3 − 0.02385B2 f2 + 0.8044B2 f

− 191.8B2 − 2.28 10−6 B f4 + 0.0003249B f3 − 0.01584B f2 + 0.3137B f + 6.276B + 9.245 10−9 f5 − 1.49 10−6 f4

+ 0.00008792 f3 − 0.002361 f2 + 0.03147 f + 0.5171)
(2)

Where viscosity η is given in kPa.s, and shear modulus G is given in MPa.

1.3 Single Degree of Freedom aeroelastic oscillations

Many structures can be modeled as single-degree-of-freedom systems, which is why it is a recurring case
study, serving as a basis for understanding more complex systems. Figure 2 illustrates the case study of this
research, while equation Equation 3 describes the free motion of the aeroelastic oscillator.

mÿ + cẏ + ky =
1

2
ρV 2HL[A1(

ẏ

V
)−A3(

ẏ

V
)3 + A5(

ẏ

V
)5 −A7(

ẏ

V
)7]

(3)

Where mass m is given in kg, stiffness k in N/m, displacement y in meters, damping c in N.s/m, air density
ρ = 1.2kg/m, prism height H , and width L in meters, incidence velocity V in m/s, constants A1 = 2.69,
A3 = 168, A5 = 6270, A3 = 59900, obtained experimentally by Parkinsson (1964) [8], where H=L.
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Figure 2. Prismatic mass-spring-damper system, with non-linear input and response

1.4 Aeroelastic gallop of blunt structures

Galloping is defined by oscillations transverse to the wind direction, a phenomenon governed by both the
nature (wind direction and intensity) and the geometry of the body.

Cable-stayed bridge cables are common cases of galloping, which, due to their cylindrical shape, promote
the shedding of Karman vortices. In 2002, in China, the first known application of a magnetorheological device
(liquid matrix) to reduce these effects was dated, making the Donting Lake bridge (Figure 3) a reference for the
use of this technology [9, 10].

Figure 3. Magnetorheological damping device of Donting Lake bridge

2 Methodology

2.1 Stiffness and damping

The experimental data implemented originate from the Kelvin Voigt viscoelastic solids characterization
model. For the simplified case of a single-degree-of-freedom oscillator where the deformation is expressed by
the ratio between displacement and sample thickness, the damping and stiffness values resemble the linear viscous
damping model, expressed by Equation 4:

k =
GA

e
, c =

ηA

e
(4)
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Where A = 0.01 is the area of the EMR damper in m², e = 0.01 its thickness in meters, considering a double layer
sample (10cm x 10cm x 1cm).

2.2 Analytical equations

The gallop equation is rewritten in its dimensionless form by means of algebraic substitutions [11]:

Ÿ + Y = nA1[(U − 2ζ

nA1
)Ẏ − (

A3

A1U3
Ẏ 3 + (

A5

A1U5
)Ẏ 5 − A7

A1U7
)Ẏ 7]

(5)

Y =
y

h
, τ = ωt , U =

V

ωh
, n =

ρh2

2m
, ω =

√
k

m
, ζ =

c

2ωml
(6)

Applying the Multiple Scale Method, one obtains the amplitude equation of the system [12]:

dR(ϕ)

dϕ
=

1

2
ε[(UA1 −

2ζ

n
)R− 3

4

A3

U
R3 +

5

8

A5

U3
R5 − 35

64

A7

U5
R7] (7)

The critical speed V c (m/s) of this system is obtained by linearizing Equation 3, considering very small
oscillations, and defines the first bifurcation point in the stable regime.

VC =
2c

ρhlA1
(8)

A qualitative analysis is proposed, since the acquisition limits of the available data are not comprehensive.
The simulated system is arbitrary, with mass m = 45, and fixed at tension τ = 1.05kPa, frequency f = 30hz,
with variable field from zero to maximum (B = 0.35T ).

3 Results and Discussion

Analyzing the Hopf’s bifurcation diagram of the nonlinear system, an almost three-fold increase in the critical
speed is observed, and consequently, also in the limit cycles (Figure 4). Two points of interest were highlighted
(points 0 and 1), which correspond to the maximum amplitude in the original condition of the system that, when
the magnetic field is activated, changes its periodic solution to a focal point, suppressing the trajectory.

Figure 4. Hopf’s bifurcation diagram (amplitude E, velocity V ).

The plot of the phase portraits reveals changes in the trajectory curves at the points of interest, within stable
regimes (Figure 5).
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Figure 5. Phase portraits. (a) Point 0. (b) Point 1.

The displacement response (Figure 6) highlights the transition between periodic and damped motion, with
great action provided by active damping.

Figure 6. Displacement response in zero and maximum applied external field.

4 Conclusions

Through simulations in an arbitrary system, the great potential for the development of control technologies
for systems based on the use of EMR materials was verified, with great effectiveness in changing the behavior of
a nonlinear system, also demonstrating the sensitivity of these systems to variable viscoelastic parameters. The
activation of the external magnetic field was able to drive the trajectory of the movement from periodic limit cycles
to a damped decaying spiral movement, as well as an increase in the critical speed by about three times its value in
a null field. The change in the shape of the Hopf bifurcation diagram was also observed, with visible ”stretching”
also indicating the effect of the increase in active stiffness.
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