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Abstract. We consider a portal frame with 3 prismatic bars in “engineered” wood. The horizontal beam, of length 

L, is articulated at the top of the vertical columns, of height h, embedded in the base. The cross sections are 

rectangular with thickness b, constant, and width d, which can be different in the beam (𝑑𝒃) and in the columns 

(𝑑𝒄), always greater than or equal to the thickness. The material is considered linear elastic and homogeneous, 

with given modulus of elasticity (E) and density r. In the middle of the beam span, a motor of mass M is mounted, 

rotating at a frequency of N rpm. We present the minimization of the mass of the structure so that the motor rotation 

frequency is always at least 20% above any of the first 2 undamped free vibration frequencies of the frame. Normal 

stresses due to bending moments generated by unbalanced forces and gravity are also checked. 

Keywords: frequency, optimization, enginerered wood, portal frame. 

1  Introduction 

According to Bertoldo et. al [1] the use of wood has been highly recommended due to its sustainability and 

diverse applications as it has considerable mechanical resistance. With the rise in interest in the application of 

wood in civil construction and the expansion of new technologies, engineered wood emerged, which is an entire 

class of construction products and materials, manufactured through the union of pieces of raw wood, wood 

scraps, fibers wood crushed wood and/or sawdust with adhesives to create products that look and act like wood, 

but are designed to be stronger and more resilient. 

The present article presents a dynamic analysis and mass optimization of a simple portal frame by means of 

a model composed of three prismatic bars in “engineered” wood: a horizontal beam articulated to vertical 

columns clamped in their bases. In this example, we disregard geometric and material nonlinearities. 

The objective of this work is to find the minimum cost in the design of the structure via minimization of its 

mass by definition of the design variables (and), which will be done, as suggested by Brasil and Silva [2], using 

the computational method provided in Excel Solver, considering the frequency and resistance constraints of 

inequality, as suggested by Brasil and Silva [3] and Mazzilli [4]. 

In this work, the dynamic properties of stiffness and mass of the system's 2 vibration modes are 

approximated by applying Rayleigh’s Method, with appropriately assumed shape functions. With these values, 
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the vibration frequencies of these modes are determined and compared to the proposed limits in relation to the 

motor rotation frequency in steady state. Likewise, a Balancing Quality Degree is adopted for the motor, given 

by ISO 1940-1:2003, in order to determine, based on the mass of its rotor, the unbalancing force that generates, 

together with gravity effects, the bending moments and corresponding normal stresses in the structural parts, to 

be compared with the allowable stress of the material. 

2. Mathematical model and numerical parameters 

We consider the model in Figure 1, an engineered wood frame composed of three bars of constant rectangular 

sections of thickness b = 12 cm; eight d can assume different dimensions in the beam (𝑑𝒃) and in the columns (𝑑𝑐) 

always greater than or equal to b or less than or equal to 3b; the beam is 6 m long and is articulated at the meeting 

with the columns of 3 m high each clamped in the base. The material is considered elastic and homogeneous with 

modulus of elasticity E=10 GPa, density ρ = 800 kg/m³ and allowable stress 𝜎 =10 Mpa. On the beam shaft is 

mounted a motor with a total mass M = 150 Kg, a rotor with a mass 𝑚0 = 50 Kg, a steady-state operating frequency 

of N=360 RPM and a degree of balancing quality G = 6.3 mm/s ISO 1940-1:2003 [05]; adopted damping rate ξ = 

2.5 % in both vibration modes. We consider the action of the force of gravity g = 10 m/s² acting on the entire 

system. Frequency constraints 𝜔𝑏 ≥1.2 𝜛 and 𝜔𝑐 ≥1.2 𝜛 are considered. 

 

 

Figure 01: The mathematical model 

3. Application of the Rayleigh’s method 

According to Yserentant [6], Rayleigh's variational method, based on principles of mechanical energy 

minimization, replaces the structural continuum, with infinite degrees of freedom, by a mathematical model with 

only one generalized coordinate to be determined, starting from shape functions that approximate the real 

deformation of the structural parts. Such functions must obey the geometric boundary conditions and assume a 

unit value in the direction of the adopted generalized coordinate. Thus, it makes it possible to determine scalar 

stiffness, mass and loading coefficients equivalent to those of the original continuous model. Currently, the 

Method has been one of the bases for formulating the Finite Element Method.  

In what follows, we adopt shape functions 𝜙(𝑥),  

3.1 Equivalent mass and stiffness formulation 

Equivalent stiffness: 

𝑘 = ∫ 𝐸𝐼 (𝜙′′)2𝑑𝑥
𝐿

0
  (1) 

 

Equivalent mass: 

𝑚 = ∫ 𝜌𝐴 (𝜙)2𝑑𝑥
𝐿

0
  (2) 
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3.2 Symmetrical Mode Vibration Frequency (Beam) 

Shape Function: 

𝜙 = 𝑠𝑒𝑛 (
𝜋𝑥

𝐿
) 0 ≤ 𝑥 ≤ 𝐿 (3) 

 

 

Equivalent stiffness of beam and mode:  

𝑘𝑏 =
𝜋4𝐸𝐼

2𝐿3 ≅
48 𝐸𝐼𝑏

𝐿3   (4) 

 

Equivalent mass of beam:  

𝑚 =
𝜌𝐴𝑏𝐿

2
   (5) 

 

Symmetrical Mode Equivalent Mass: 

𝑚𝑏 = 𝑀 +
𝜌 𝐴𝑏 𝐿

2
   (6) 

 

Symmetrical Mode Frequency: 

 𝜔𝑏 = √
𝑘𝑏

𝑚𝑏
 (rad/s)  (7) 

3.3 Vibration frequency of "Sway" mode (columns) 

Shape Function: 

𝜙(𝑥) =
3𝑥2

2ℎ2 −
𝑥3

2ℎ3 0 ≤ 𝑥 ≤ ℎ (8) 

 

Equivalent stiffness of columns and mode:  

𝑘 =
3 𝐸𝐼𝑐

ℎ3      (9) 

 

 

 

Equivalent Mass of column: 

 𝑚 =
33

140
𝜌 𝐴𝑐ℎ ≅

𝜌 𝐴𝑐ℎ

4
    (10) 

 

Equivalent Mode Stiffness: 

 𝑘𝑐 =
6 𝐸𝐼𝑐

ℎ3      (11) 

 

Equivalent mass of the "sway" mode: 

 𝑚𝑐 =
𝜌 𝐴𝑐ℎ

2
+ 𝑀 + 𝜌 𝐴𝑣 𝐿    (12) 

 

Symmetrical Mode Frequency: 

 𝜔𝑐 = √
𝑘𝑐

𝑚𝑐
  (rad/s)   (13) 

4. Calculation of bending moments and normal stresses 

4.1 Force due to unbalance [05] (ISO 1940-1:2003) 

𝐹 = 𝑚0 𝑒 𝜛2 = 𝑚0 𝐺 𝜛, (𝐺 = 𝑒 𝜛)  (14) 

 

where 𝜛 =  𝜋 𝑁/30 (rad/s), 
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𝐺 must be given in m/s, mass in kg, so that forces will be given in Newton. 

4.2 Maximum bending moment and normal stress in beam (steady state): 

 

𝑉 = 𝐹
1

√(1−𝛽2)2+(2𝜉𝛽)2
    (15) 

 

𝑀𝑓𝑏 =
(𝑉+𝑚𝑏 𝑔)𝐿

4
     (16) 

 
𝑀𝑓𝑏

𝑊𝑏
 ≤ 𝜎,                 where           𝑊𝑏 =

𝑏 𝑑𝑏
2

6
                (17) 

 

4.3 Maximum bending moment and normal stress in columns (steady state): 

 

𝐻 = 𝐹
1

√(1−𝛽2)2+(2𝜉𝛽)2
    (18) 

 

𝑀𝑓𝑐 = 𝐻 ℎ          (19) 

 
𝑀𝑓𝑐

𝑊𝑐
 ≤ 𝜎,                 where           𝑊𝑐 =

𝑏 𝑑𝑐
2

6
      (20) 

 

5. Mass optimization 

5.1 Objective (cost) Function: 

𝑓(𝐱) = 𝜌 𝑏 (𝐿 𝑥1 + 2 ℎ 𝑥2)        (21) 

 

5.2 Project Variables: 

𝑥1 = 𝑑𝑏           𝑥2 = 𝑑𝑐       𝐱 = [𝑥1 𝑥2]𝑻  (22) 

 

5.3 Inequality constraints: 

 

5.3.1 Dynamic inequality (frequency) constraints: 

𝑔1(𝒙) =  1,2𝜛 −  𝜔𝑏  ≤  0   (23) 

𝑔2(𝒙) =  1,2𝜛 −  𝜔𝑐  ≤  0   (24) 

 

5.3.2 Architectural inequality constraints: 

𝑔3(𝒙) = 𝑥1 − 3𝑏 ≤  0    (25) 

𝑔4(𝒙) =  𝑏 − 𝑥1 <  0    (26) 

𝑔5(𝒙) = 𝑥2 − 3𝑏 ≤  0    (27) 

𝑔6(𝒙) = 𝑏 − 𝑥2  <  0    (28) 

 

5.3.3 Normal stress inequality constraints: 

𝑔3(𝒙) =
𝑀𝑓𝑏

𝑊𝑏
− 𝜎  ≤ 0    (29) 

𝑔4(𝒙) =  
𝑀𝑓𝑐

𝑊𝑐
− 𝜎 <  0    (30) 

 

 

 

5.4 Application of a computational design optimization technique to find the mass and design variables 

(𝑥1 𝑒 𝑥2): 

 

According to Brasil and Silva [3], the Microsoft Excel Solver add-in allows to solve optimization problems, 

finding optimal values to determine variables subject to a set of constraints through nonlinear programming with 
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the generalized reduced gradient (GRD) method. 

Therefore, we found the optimal combination of beam height dimensions (𝑑𝑏) and column (𝑑𝑐) in values of 

27,65 cm and 31,99 cm respectively, with correspond to a mass of 343,53 kg of structure. 

 

6. Results 

The results obtained through the modal analysis are presented in table 01 e results Forced vibration in table 

02: 

 

Table 01. Results Modal analysis - undamped free vibration 

Acronym Value Unit Description 

db 0.2765 m Beam height 

dc 0.3199 m Column height 

f 343.53 kg Objective function 

g1 0.0000000000   Symmetrical motor frequency (beam) 

g2 0.0000000015   Symmetrical motor frequency (columns) 

g3 -0.0834557849   Architectural conditions 

g4 -0.1565442151   Architectural conditions 

g5 -0.0401366852   Architectural conditions 

g6 -0.1998633148   Architectural conditions 

g7 -7710131   Stress acting on the beam 

g8 -9943544   Stress acting on the columns 

 

 

Table 02. Results Forced vibration 

Acronym Value Unit Description 

ωv 45.2389 rad/s Natural frequency of beam symmetric mode 

ωc 45.2389 rad/s Speaker Sway mode natural frequency 

ϖ 37.6991 rad/s Engine forcing frequency 

b 0.8333   Ratio between motor/beam frequencies 

c 0.8333   Ratio between motor/columns frequencies 

uev 0.0005 m Displacement in the beam when the engine is running 

uec 0.0003 m Displacement in the columns when the engine is running 

Dv 3.2427   Factor dynamic amplication in the beam 

Dc 3.2427   Factor dynamic amplication in the columns 

σ 10000000 N/m² Allowable normal voltage 

 

For a better final interpretation of the results, we present the graph below that shows the effect of dynamic 

amplification on the structure (D) which is a function of , for different values of ξ (figure 02): 
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Figure 02: Variation of the dynamic amplification coefficient with damping and frequencies. Source Clough, R; Penzien, J., Dynamics of 
structures, 2nd Ed. New York: McGraw, 1993 apud Brasil and Silva [3]. 

 

7. Conclusions 

 

Initially, we observed the ease with which a method as efficient as the Excel Solver offers in a few minutes 

the best objective function value for the structure. The mass and its design variables (dimensions db and dc) were 

easily obtained considering the imposed design constraints (architectural, vibrations and stresses) that were met 

at the best optimum point, as shown in table 01. 

We can also observe that que natural vibration frequencies of the structure (ωv e ωc) are directly related to 

the physical and mechanical properties of the structure  and are not subject to the action of loading (motor). In 

this way, we establish as dynamic design inequality constrains that these vibrations are at least 20% greater than 

the engine vibration (ϖ). This condition was imposed so that the safety of the entire system was preserved by 

preventing the engine from entering into resonance with the structure, which is why second-order effects were 

not considered, as when resonance occurs the displacements are significant and must be considered. 

Also analyzing the relationship  (motor forcing frequency/natural frequency of the structure), we observe 

in figure 02 what will happen to the structure as we change the loading frequency (motor). As the engine speed 

increases, the response of the ratio   approaches resonance (where  = 1). The values of  together with the 

damping rate ξ, directly influence the result of dynamic amplification on the structure, when the load is high 

frequency in relation to the structure the dynamic response will be small and when the damping rate is small the 

result of dynamic amplification will be great. 

Finally, we can also conclude that the new dimensions found and presented in table 02, offer the structure 

normal stress values for the beam and pillars that are much lower than the allowable stresses, in forced vibration 

when the engine reaches its full operational stationary state, when this occurs We can say that security is being 

assured. 
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