
   

 

CILAMCE-2024 

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  
Maceió, Brazil, November 11-14, 2024 

Nonlinear linear dynamics and numerical analysis of a sloshing tank  

Mauricio Aparecido Ribeiro1, Jose Manoel Balthazar1,2, Maria Aline Gonçalves3, Angelo Marcelo Tusset1, 

Raphaela C. Machado4 

1Dept. of Electrical, Universidade Tecnológica Federal do Paraná 

Rua Doutor Washington Subtil Chueire, 330 - Jardim Carvalho 84017-220 Ponta Grossa, Paraná, Brazil 

mau.ap.ribeiro@gmail.com 
2Mechanical Faculty, Universidade De São Paulo- UNESP  

Av. Eng. Luiz Edmundo C. Coube 14-01 - Vargem Limpa - Bauru - SP/SP - CEP 17033-360 

jmbaltha@gmail.com 
3Dept. of Electrical, Centro Universitário Internacional 

R. Voluntários da Pátria, 290 - Centro, Curitiba - PR, 80020-000, Paraná, Brazil 

a.m.tusset@gmail.com 
2 Faculdade de Engenharia de Guaratinguetá, Universidade de São Paulo- UNESP 

Avenida Doutor Ariberto Pereira da Cunha, Portal das Colinas, 12516410, São Paulo, Brazil 

 

Abstract. Sloshing motion in liquids refers to the phenomenon of oscillation or agitation that occurs when a liquid 

is subjected to movement or disturbance. This can happen in containers, tanks, ships, or any other object that 

contains liquid and is subject to movement, such as acceleration, deceleration, turning or tilting. These oscillations 

can be caused by several factors, such as sudden changes in speed, changes in the direction of movement, winds, 

waves, or even internal movements of the liquid due to its own inertia. Sloshing can have significant effects in 

different contexts, such as naval engineering, liquid cargo transportation, storage tank projects, among others. 

Therefore, the study of sloshing is important to ensure the safety and stability of structures that contain moving 

liquids, as the forces resulting from these oscillations can affect structural integrity and even lead to accidents if 

they are not properly considered and controlled. Mathematical models and computer simulations are often used to 

predict and mitigate the effects of sloshing in different applications. Thus, this work investigates a mathematical 

model that describes a tank coupled to an electric motor, and therefore we determine the parameter space of the 

Lyapunov Exponent, bifurcation diagrams and phase maps. These numerical analyses are important to determine 

the range of parameters that diagnose chaos in the system 
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1  Introduction 

In fluid dynamics, liquid slosh refers to the movement of liquid within another object. Strictly speaking, the 

liquid must have a free surface to constitute a slosh dynamics problem, where the dynamics of the liquid can 

interact with the container to significantly alter the dynamics of the system. Analyzes of nonlinear dynamic 

behavior are extremely important to determine the parameters that may or may not occur in chaos phenomena in 

vibrations inside the tank that transports the liquid. Classic examples of this transport are the fuel tanks on aircraft 

such as planes and cargo-carrying rockets [1-12]. 

Authors such as [14-18] analyze the behavior of oscillation dynamics through CFD that compare 

computational and experimental results to investigate the relative speed of the fluid interface to confirm 

mathematical models that are proposed. 
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However, CFD analyzes can have a high computational cost to obtain results, thus analyzes with mechanical 

systems using mathematical modeling with the Lagrange formalism considering the system's energies. In this way, 

considering such formalism supports the understanding of a more global scale of the vibrations that occur in the 

mechanism and has a higher computational cost if we compare the CFD. 

One issue highlighted is the liquid propellant fuel tank, as concerns in the design of liquid propellant rockets 

include movement of the center of mass, vehicle attitude, and lateral bending of the vehicle structure. Shaking 

technology developed for space applications is not applicable to tank trucks because emphasis has been placed on 

frequencies and total forces related to control system requirements and therefore the effects of local impact 

pressure peak on structural requirements have not been studied to any extent. Furthermore, the excitation 

amplitudes considered in space applications are too small for road vehicle simulation. In tank trucks, the liquid-

free surface can undergo large excursions even for very small movements of the container. This is an undesirable 

characteristic, which can considerably compromise the stability and handling quality of the vehicle. This problem 

is common in fuel or cargo tanks of motor vehicles, railway tank cars, fuel tanks of large ships and tankers. The 

study of the dynamics of liquid movement within a moving vehicle involves different types of modeling and 

analysis [15-24]. 

Therefore, our manuscript investigates the nonlinear dynamic behavior in numerical form, the system 

consisting of a tank containing a liquid coupled to a non-ideal engine. To do this, we analyze the nonlinear dynamic 

behavior with the Lyapunov exponent, which describes the divergence of phase space trajectories. This analysis 

allows investigating and diagnosing the parameter space and defining possible regions in which the system 

presents chaotic or periodic behavior. 

2  Mathematical Modeling 

According to [9] the movement of the liquid on the surface of the tank can have a chaotic or regular behavior. 

The surface of the liquid inside the tank is described by the linear combination of the sums of the vibration 

eigenmodes 𝜂(𝑟, 𝜃, 𝑡) = 𝜂𝑛(𝑡)𝜓𝑛(𝑟, 𝜃), where the sum is performed at indices i and j, therefore: 

 

                       𝜂(𝑟, 𝜃, 𝑡) = ∑ [𝑞𝑖,𝑗
𝑐 (𝑡)𝑘𝑖,𝑗(𝑟)cos (𝑖𝜃)  + 𝑞𝑖,𝑗

𝑆 (𝑡)𝑘𝑖,𝑗(𝑟)sin (𝑖𝜃) ]⬚
𝑖,𝑗                                 (1) 

 

Eq. (1) was obtained by applying the traditional boundary problem solution procedure using the variable 

separation method. This way, each index i or j has its own functions, frequency and parameters. To analyze Eq. 

(1), Miles in Refs. [9] proposed the sum of identical indices, so that the regular or chaotic movement is presented 

by Eq. (1) which is characterized by the fundamental amplitudes and the secondary vibration motors that represent 

an approximation of the irregularities of the free surface of the liquid. According to the authors in Ref. [9, 10] they 

assume that the resonant oscillations of the liquid surface are approximated by: 

 

 

𝜂 ≈ 𝜂1𝑘𝑛𝑚(𝑟) 𝑐𝑜𝑠  (𝑛𝜃)  + 𝜂2𝑘𝑛,𝑚(𝑟) 𝑠𝑖𝑛  (𝑛𝜃)                                                                                          (2) 
 

 

with: 

𝜂𝑛(𝑡) ∝ [𝑝𝑛(𝜏) 𝑐𝑜𝑠  (𝜎(𝑡))  + 𝑞𝑛(𝜏)𝑠𝑖𝑛 (𝜎(𝑡)) ]                                                                                         (3) 

 

with 𝑛 = 1, 2. Where 𝑝𝑛 e 𝑞𝑛 represent the amplitudes. However, the Lagrange equation is defined by: 

 

𝐿 =
1

2
{𝐼 𝜎̇2 + 𝑚0𝑣̇2 + 𝜌𝑆[𝑎𝑚𝑛𝜂̇𝑚𝜂̇𝑛 − (𝑔 + 𝑣̈)𝜂𝑛𝜂𝑛]}                                                                           (4) 

 

where S is the cross-sectional area of the tank, I is the moment of inertia of the electromotor shaft, m0 is the mass 

of the tank, q is the density of the fluid, g is the acceleration of gravity, is the vertical acceleration of the tank, and 

𝑎𝑚𝑛are nonlinear functions of 𝜂𝑛.  The angular speed of the electromotor shaft depends on the characteristics of 
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the electric motor and the vibration of the fluid, and this speed cannot be a prescribed value. This occurs because 

the power of the electromotor, which excites the vertical vibrations of the tank, is comparable to the power 

dissipated in the fluid in the damping process. As mentioned before, the tank is displaced in space according to 

y(t) = x0 cos 𝛿(𝑡). Placing vertical accelerations 𝑣̈  em L, we obtain an expression for the angle δ(t), 

 

         𝐿 =
1

2
{𝐼 𝜎̇2 + 𝑚0𝑥0

2𝛿̇2𝑠𝑖𝑛 2(𝛿) + 𝜌𝑆[𝑎𝑚𝑛𝜂̇𝑚𝜂̇𝑛 + [𝑥0(𝛿̇2𝑐𝑜𝑠(𝛿) + 𝛿̈ 𝑠𝑖𝑛 (𝛿) ) − 𝑔]𝜂𝑚𝜂𝑛]}                 (5) 

Podendo ser derivado da equação de Lagrange pelas coordenadas generalizadas do motor 𝛿 com  

 

𝐼𝛿̈ = −𝑚0𝑥0
2𝛿̈(𝛿) − 𝑚0𝑥0

2 𝛿̇2 𝑠𝑖𝑛 (𝛿)  𝑐𝑜𝑠 (𝛿)  + 𝜌𝑆𝑥0(𝛿̇2 𝑠𝑖𝑛 (𝛿)  − 𝛿̈ 𝑐𝑜𝑠 (𝛿) )𝜂𝑛𝜂𝑛  − 2𝜌𝑆𝑥0𝛿̈ 𝑐𝑜𝑠 (𝛿)  +

                                        𝛹(𝛿̇) − 𝐻(𝛿̇)                                                                                                                                 (6) 
 

 

The vibration of the free surface is approximated by dominant and secondary modes: 

 𝜂𝑛 = √
𝑥0𝜔1

2

𝑔
𝜆 [𝑝𝑛(𝜏) 𝑐𝑜𝑠 (

𝛿

2
)  + 𝑞𝑛(𝜏)𝑠𝑖𝑛 (

𝛿

2
)]                𝑛 = 1, 2                                                                        (7) 

 

and for the amplitude of the secondary modes, 

 

𝜂𝑛 =  
𝑥0𝜔1

2

𝑔
𝜆[𝐴𝑛(𝜏) 𝑐𝑜𝑠 (𝛿)  + 𝐵𝑛(𝜏) 𝑠𝑖𝑛 (𝛿)  + 𝐶𝑛(𝜏)]                 𝑛 ≠ 1,2                                                          (8)    

 
Following the authors' procedure, that is, we can write an expression for the mean Lagrangian (L), so: 

 

〈𝐿〉 =   
1

2
𝐼𝛿̇2 +

1

4
𝑚0𝑥0

2 𝛿̇2 +
1

2
(

𝑥0𝜔1
2

𝑔
)

4

𝜆2𝜌𝑆 [
1

2
(

𝑑𝑝𝑛

𝑑𝜏
𝑞𝑛 − 𝑝𝑛

𝑑𝑞𝑛

𝑑𝜏 
) + 𝑝1 +

𝛿̈

𝜔1
2 𝑞1 + 𝛽𝐸 +

𝐴𝐸2

2
+

𝐵𝑀2

2
]              (9) 

 
 

The Hamiltonian equations, described by Eq. (9), and we obtain the system presented in Eq. (10) for the 

temporal evolution of the equations, where the last equation for closes the system Eq. (10) and is obtained with 

the characteristics of the electric motor, however: 

 

                             

𝑑𝑝1

𝑑𝜏
= 𝛼𝑝1 − (𝛽 + 𝐴𝐸 − 2)𝑞1 + 𝐵𝑀𝑝2

𝑑𝑞1

𝑑𝜏
= −𝛼𝑞1 + (𝛽 + 𝐴𝐸 + 2)𝑝1 + 𝐵𝑀𝑞2

𝑑𝑝2

𝑑𝜏
= −𝛼𝑝2 − (𝛽 + 𝐴𝐸 − 2)𝑞2 − 𝐵𝑀𝑝1

𝑑𝑝2

𝑑𝜏
= −𝛼𝑞2 + (𝛽 + 𝐴𝐸 + 2)𝑝2 − 𝐵𝑀𝑞1

𝑑𝛽

𝑑𝜏
= 𝑁2 − 𝑁1𝛽 − 𝜇(𝑝1𝑞1 + 𝑝2𝑞2)

                                                             (10) 

 

where 𝐸 =
1

2
(𝑝1

2 + 𝑞1
2) +

1

2
(𝑝2

2 + 𝑞2
2) and 𝑀 = 𝑝1𝑞2 − 𝑝2, N1 and N2 are depending on constants of the linear 

static performance curve of the motor, N2 is also a function of the natural frequency of the free surface oscillations, 

and 𝜇 is a parameter in function of the natural frequency and physical characteristics of the motor which measures 

the offset of frequencies. A and B are constant coefficients. 

In Fig. (1) show the scheme considered for moving the oscillations of the tank containing liquid coupled 

to a motor to cause the oscillations containing the liquid. 
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Fig. (1): Mechanical scheme, where δ is the engine rotation, η is the linear combination of the sums of the 

vibration eigenmodes, y(t) external force that moves the tank containing the liquid, -d represents the lower part 

of the liquid. 

3  Numerical Results  

For numerical analyses, we used the parameters described in Tab. (1) and the following initial condition 

[0.1, 0.1,1.0,1.0,0.0], we used the 4th order Runge-Kutta integrator, with a total integration time of 106[s] and 

considering a transient time of 40% of the total time. 

Tab (1): Parameter for numerical analysis. 

Parameters Values 

A 1.112 

B -1,531 

N2 -0.25 

α 0.8 

 

 

As a first analysis, we investigated the maximum Lyapunov exponent (λ_max), which describes the 

behavior of phase space trajectories. The Fig. (2)(a) shows the behavior of  𝜆𝑚𝑎𝑥 < 0 considering 𝑁1 ∈
[3.5, 4.0] × 𝜇 ∈ [0,1], the region in black shows the periodic behavior of the system, that is, 𝜆𝑚𝑎𝑥 > 0 and for the 

colors between purple and yellow, that is, 𝜆𝑚𝑎𝑥 > 0  the chaotic behavior of the system [12-14]. The interesting 

thing to be observed are the shrimp-like structures that appeared within the parameters obtained in Fig. (1). 

According to [15,19] shrimp-like structures are formed by the regular set of adjacent windows centered around the 

main pair of intersecting superstable arches. Such structures are infinite mosaics of stability domains doubly 

composed of one main innermost domain but all adjacent stability domains arising from two period-folding 
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cascades together with their corresponding chaotic domains [20, 26]. The Fig. (2)(b) shows a rough image of the 

shrimp-like patterns found in the parameter space determined by 𝜆𝑚𝑎𝑥  
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Fig (2): Maximum Lyapunov Exponent.  (a) 𝑁1 ∈ [3.5, 4.0] × 𝜇 ∈ [0,1] and (b) 𝑁1 ∈ [3.5, 3.8] × 𝜇 ∈ [0.5,1] 
zoom for shrimp observation. 

For a more specific analysis, we do not consider the value of 𝑁1 =  3.5351 because with the variation of 

𝜇 ∈ [0,1] the intersection with the shrimp-type structure and thus we can observe the behavior of the bifurcation 
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diagram as shown in Fig. (3)(a), to confirm the periodic windows determined by the bifurcation diagram, the 

corresponding intervals determined by the bifurcation diagram are described in Tab. (1) 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3): (a) Diagram bifurcation for 𝜇 ∈ [0,1] e 𝑁1 =  3.5351   and (b) maximum Lyapunov Exponent 𝜇 ∈ [0,1] 

e 𝑁1 = 3.5351  . 

 

 

Tab. (1): Range of 𝜇 determined by the bifurcation diagram 

Range of 𝜇 Behavior 

[0.0, 0.1600] 

Periodic Behavior 

See Fig (3)(a) 

[0.1700, 0.4793] 

[0.5257,0.5282] 

[0.6208, 0.6211] 

[0.6721,0.6792] 

[0.821, 0.8723] 

[0.9149,0.9116] 

[0.9437,0.9440] 

[0.9962, 0.9965] 

 

 

In this way, we can define the behavior of the phase maps considering the analyzes of the bifurcation 

diagram and the Poincaré maps. The Fig.(4)(a), Fig. (4)(b), Fig. (4)(c) and Fig. (4)(d) the gray line represents the 

behavior of the system's phase map defined by Eqs. (10) and black dots show the Poincaré maps. 
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Figs. (4): Phase maps (gray line) and Poincare maps (black dots) for p1 x q1. (a)𝜇 = 0.1476, (b) 𝜇 = 0.605757, 

(c) 𝜇 = 0.857322 and (d) 𝜇 = 0.645227. 

 

The Fig. (5)(a), Fig. (5)(b), Fig. (5)(c) and Fig. (5)(d) the gray line represents the behavior of the system's phase 

map defined by Eqs. (10). The black dots represent the Poincaré maps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figs. (5):  Phase maps (gray line) and Poincare maps (black dots) for p2 x q2. (a)𝜇 = 0.1476, (b) 𝜇 = 0.605757, 

(c) 𝜇 = 0.857322 and (d) 𝜇 = 0.645227. 
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4  Conclusions 

This work analyzes nonlinear wave motion in a tank excited by a nonideal energy source. Free surface 

oscillations have a chaotic behavior depending on the parametric settings in the electromotor. The nonlinear 

dynamic analysis of the proposed system showed that the sweep of parameters 𝑁1 and 𝜇 considering the maximum 

Lyapunov exponent showed the emergence of structures called shrimps. Such structures are formed by the regular 

set of adjacent windows centered around the main pair of intersecting super stable arches. That is, in the case of 

parameters 𝑁1 and μ which are related to the electric motor and thus changing the rotation dynamics applied to the 

system. In this way, we observe changes in the nonlinear dynamic behavior of the liquid surface vibration as 

observed at the maximum Lyapunov exponent. We observe the periodic windows for 𝑁1= 3.5351 and the sweep 

of μ ∈ [0,1], such a value of 𝑁1with the sweep of μ passes through the center of the shrimp structure and thus the 

period presented by the bifurcation diagram can be observed. structure. Through this bifurcation diagram we can 

determine for some values of 𝜇 = 0.1476,  𝜇 = 0.605757,  𝜇 = 0.857322 and 𝜇 = 0.645227 determine the 

phase maps with their respective Poincaré maps and thus observe the chaotic and periodic behavior with the change 

of parameter  𝜇.  Such non-linear dynamic analyzes help to determine parameters and thus develop control projects 

that can suppress chaotic behavior for some orbit of interest that is periodic obtained by relevant algebraic methods, 

such as the harmonic balance method. Therefore, future work is a control design like SDRE that is based on the 

Riccati equation that could suppress the chaotic behavior of liquid surface vibrations described in the mathematical 

model of our manuscript for a periodic orbit. 
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