
Wave and vibration attenuation analyzes of 2-D phononic crystals using
the scaled boundary finite element method
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Abstract. This study uses the scaled boundary finite element method (SBFEM) to investigate the wave propagation
and vibration in a 2-D phononic crystal (PnC). The SBFEM is a general semi-analytical method where a problem
domain is divided into subdomains satisfying the scaling requirement. It offers the advantages of the finite element
method (FEM) and the boundary element method (BEM), avoiding some drawbacks and making it very attractive
for PnC applications. In this investigation, the SBFEM is formulated using the Bloch-Floquet theory to model
the periodic 2-D PnC unit cells. The 2-D PnC is composed by square inclusions distributed in a matrix with
square lattice. The SBFEM results are computed in the form of dispersion diagram and forced response of the 2-D
PnC. The dispersion diagram obtained by SBFEM is validated with those obtained by the FEM and plane wave
expansion (PWE) method.
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1 Introduction

The study of wave propagation in periodic systems began with Brillouin [1]. He focused on problems of
solid-state physics, electrical engineering, and electronics. Then, elastic wave propagation in periodic engineering
structures, e.g., beams and plates, was investigated by Mead [2], Orris and Petyt [3]. In the last years, acoustic
wave propagation in periodic composite materials known as phononic crystals (PCs) has attracted much attention
from researchers due to its unique physical properties [4, 5]. They have received renewed attention because they
exhibit band gaps, where mechanical (elastic or acoustic) waves are drastically attenuated inside the band gaps.
The Bragg scattering mechanism generates the phononic crystal band gaps, which generate destructive interference
among propagating waves. Bragg’s law governs the frequency band location, where the wavelength is inversely
related to PC unit-cell size. Different methods have been developed to compute elastic band gaps in PCs. Among
them, it can be mentioned the plane wave expansion (PWE) method [6, 7], the conventional finite element method
(FEM) [8], the finite difference time domain (FDTD) method [9], the boundary element method (BEM) [4], and
the wave finite element (WFE) method [10, 11]. By merging the advantages of FEM and BEM, a semi-analytical
approach called the scaled boundary finite element method (SBFEM) was developed. The SBFEM was initially
formulated by Wolf [12] and Song [13] for modeling wave propagation in unbounded domains. Some SBFEM
works have also been published in the last decade, mainly related to the wave propagation approach. In [14],
the SBFEM is efficiently applied to wave propagation problems. This paper extends the SBFEM formulation to
analyze the in-plane wave propagation in linear elastic periodic PCs and evaluating their efficiency when compared
to FEM and PWE.
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2 SBFEM for periodic systems

This section presents the formulation to model periodic structures with PC applications using the SBFEM.
The mathematical formulation of the SBFEM is described for the case of an in-plane stress state, where the dynamic
stiffness matrix of a PC with a periodic unit cell is obtained. The PC formulation is also described for the dispersion
curves (using the Bloch-Floquet periodic boundary conditions) and forced response calculations. The differential
equation in the frequency domain for the in-plane elastodynamic problem can be expressed in matrix form as:

∇Tσ + ω2ρu = 0, (1)

where ρ is the mass density, ω is the circular frequency, ∇ is the differential operator matrix, σ is the stress
vector and u is the displacement vector, given by:

∇ =


∂
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∂ŷ

∂
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ux

uy

 . (2)

Since SBFEM is based entirely on FEM, but with the boundary discretization only [15], consider a two-
dimensional linear elastic bounded domain V as shown in Fig. 1.
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Figure 1. Scaled boundary coordinate system for a 2D bounded domain.

In the domain, V , a scaling center O is chosen in a region where the total boundary S is visible. The origin
of the cartesian coordinate system (x̂, ŷ) is selected at the scaling center, and the boundary S is discretized. The
coordinates of the nodes of an element in the cartesian coordinate system are arranged in the vectors x and y. The
geometry of an element is interpolated using the shape functions N(η) formulated in the local coordinate η as:

x(η) = N(η)x, y(η) = N(η)y. (3)

The geometry of the domain V is described by scaling the boundary with the dimensionless radial coordinate
η pointing from the scaling center O to a point on the boundary. Then ξ = 0 at O and ξ = 1 on the chosen
boundary. A point (x̂, ŷ) inside the domain is expressed by scaling as:

x̂(ξ, η) = ξN(η)x, ŷ(ξ, η) = ξN(η)y, (4)

where η and ξ are the scaled boundary coordinates, and 0 ≤ ξ ≤ 1 are from the scaling center to the bound-
ary. After expressing the governing differential equations in the scaled boundary coordinates, the displacement is
expressed as [15]:
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Maceió, Alagoas, November 11-14, 2024



F. Author, S. Author, T. Author

E0ξ
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1 )ξu(ξ),ξ + ((s− 2)ET
1 −

E2)u(ξ) + (ωξ)2M0u(ξ) = 0, (5)

where s = 2 or s = 3 denotes the spatial dimension of the domain, and ω is the excitation frequency. The
coefficient matrices E0, E1, E2, and M0 are obtained by assembling the element coefficient matrices showed,

E0 =

∫ +1

−1

BT
1 CB1 |J| dη, (6)

E1 =

∫ +1

−1

BT
2 CB1 |J| dη, (7)

E2 =

∫ +1

−1

BT
2 CB2 |J| dη, (8)

M0 =

∫ +1

−1

NT
u ρNu |J| dη, (9)

where C is the elasticity matrix, and B1 and B2 are matrices that depend only on the geometry of the analyzed
element. The static stiffness matrix K = D(ω = 0) for the boundary is defined by setting ω = 0 as:

(
K−E1

)(
E−1

0

)(
K−ET

1

)
−E2 + (s− 2)K = 0. (10)

Identifying Eq. (10) as a Ricatti equation, it can be solved for K with the introduction of the Hamiltonian
matrix Z defined as:

Z =

 (E0)
−1

(E1)
T − (E0)

−1

−E2 +E1 (E0)
−1

(E1)
T −E1 (E0)

−1

 . (11)

The stiffness matrix and mass matrix can be written according to [15] as:

K = V21(V11)
−1, M = ((V11)

−1)Tm(V11)
−1. (12)

Therefore, the dynamic stiffness matrix can be expressed as:

D(ω) = K− ω2M. (13)
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Figure 2. A schematic of a unit cell with square inclusion.

2.1 Phononic Crystal Modelling

This subsection analyzes the PC model and how to apply Bloch-Floquet’s theorem for two-dimensional prop-
agation using SBFEM. The model of the first PC unit cell analyzed is shown in Fig.2. It is considered the structure
in the plane stress state where the modes are only in the x − y plane (that is a 2D analysis). The PC unit cell is
composed of two different materials, one material for the inclusion and another material for the cell matrix.

Analyzing a two-dimensional rectangular mesh, as shown in Fig.3, it can be considered that the indices are
related to the location of the nodes, that is, b represents the bottom part, l the left part, r the right part and t the top
part. Two consecutive indices in a row represent a corner node (e.g., br for bottom right). The index i represents
all the internal nodes of the structure that do not belong to the external region of the mesh. This study considers
that the opposite sides (l/r and b/t) have the same number and location of nodes due to the periodicity conditions.

l

tltl

bl brbr

tr

r

t

b

i

Figure 3. Partitioned nodes for rectangular plate mesh.

The matrix D may be partitioned between active (master) and internal (slave) degrees-of-freedom (DOFs),
according to

Daa Dai

Dia Dii

ua

ui

 =

fa

fi

 , (14)

where ua contains all active DOFs which are in the external region of the mesh, ui so-called internal DOFs, and fa
represents forces acting on nodes related to ua. The Eq. (15) shows a dynamic condensation, where it can be found
an equivalent dynamic stiffness seen in the boundary of the structure. Since the internal DOFs are condensed, they
are used as an intermediate dynamic subsystem, not subject to external forces, but only boundary forces as shown
in [16].

Da = Daa −DaiD
−1
ii Dia. (15)

Through mathematical manipulations that can be analyzed in [17] the eigenproblem can be assembled as:
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With this, the Eq. (16) can be solved by allocating values λx and λy for the two-dimensional case or λx, λy

and λz for the three-dimensional case and consequently for the matrices TL and TR in the boundary of the irre-
ducible Brillouin zone (IBZ) and determining all eigenvalues ω2, thus obtaining the corresponding band diagrams
for the PCs.

3 Simulated Phononic Crystal Applications

In this section, it is analyzed the band gaps found in the PCs. The band diagrams were found for a square
unit cell with a square inclusion inside. The PC unit cell consists of steel as the inclusion material i, and nylon
66 as the matrix material m, the properties of the materials used are shown in Table1. The filling fraction is the
cross-section area ratio of inclusion and unit cell, i.e., f̄ = c2/a2.

Table 1. Materials of the unit cell (PCs). The unit cell is composed by nylon 66 (matrix m) and steel (inclusion i).

Properties Value

Young’s modulus (Ei, Em) 193 GPa, 2 GPa

Density (ρi, ρm) 8030 kg/m3, 1000 kg/m3

Poisson’s ratio (νi, νm) 0.27, 0.45

Filling fraction 11.11%

In order to analyze the responses to different types of discretizations, some studies were carried out. The
unit cells of the PCs were discretized and the mesh used for FEM and SBFEM is shown in Fig. 4 (a) and (b),
respectively. The filling fraction was equal to 11.11%, where a = 0.12 m and c = 0.04 m.

(a) (b)

Figure 4. Mesh for unit cell of the phononic crystal. (a) Mesh of the unit cell in COMSOL using f̄ = 11.11%. (b)
Mesh of the unit cell in the SBFEM using f̄ = 11.11%.

The comparison between the elastic band diagram obtained by FEM, SBFEM, and PWE is illustrated in Fig.
5. It is used 36 S elements with 2 DOFs per node for the unit cell for SBFEM and 4770 DOFs for the analysis
through COMSOL and triangular finite elements was used. It can be seen in Fig. 5 (a) a band gap in the frequency
range of approximately f = 5.5− 6 kHz obtained through FEM and SBFEM. In the Fig. 5 (b), it can be noticed
the same band gap region found through the PWE method, which is illustrated through the rectangular area in gray.
For the PWE simulations, 49 plane waves were used. In Fig. 6, the FRFs for the complete structure are illustrated.
For the analysis of the forced response of the complete structure, 9 unit cells of the PC are used. Here it is used the
same excitation points and responses used in the previous example, where H11 is for measurement and response
at the same node and H12 is for measurement and response at different nodes. The band gap regions correspond to
those found through the elastic band diagram, and we also noticed a better approximation of the results found by
SBFEM with those found by COMSOL because of the refined SBFEM mesh. It can be observed that for higher
frequencies, there is still a difference between the methods. Moreover, with the refinement of the SBFEM mesh,
the results tend to approach the solution found by COMSOL.
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(a)
(b)

Figure 5. Elastic band structure of steel inclusions in an nylon 66 matrix for a square lattice using f̄ = 11.11%.
(a) Found through the FEM and SBFEM. (b) Found through the PWE method.

(a) (b)

Figure 6. FRF - Receptance for the complete structure. (a) Receptance H11 of the complete structure using
f̄ = 11.11%. (b) Receptance H12 of the complete structure using f̄ = 11.11%.

4 Conclusions

The elastic band diagrams and the forced response were computed through SBFEM and FEM. A new nu-
merical methodology based on a combination of SBFEM and Floquet-Bloch’s theorem was proposed for wave
propagation in a 2D phononic crystal. SBFEM, FEM, and PWE method obtained the Bragg band gaps for the
cases analyzed, convergence for low frequencies was noted, which was already expected due to the SBFEM ap-
proximations.
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