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Abstract. Despite the phenomenological approach presents excellent results in material behavior analysis, real-
world materials are inherently heterogeneous. A material is considered heterogeneous when, at a particular ob-
servation scale, it becomes feasible to discern multiple mixture phases within it. This level of observation is
commonly referred to as the microscale, where interactions between constituents occur, ultimately leading to the
emergence of cracks. Modeling a material at the microscale begins with defining a Representative Volume Element
(RVE), which is the smallest part of the material that is large enough to statistically represent the entire mixture.
This ensures that other samples of the same size exhibit similar properties with minor variations. The analysis of
the RVE leads to obtaining the effective properties of a portion of the material. That process is called homoge-
nization. Modeling a RVE can be a challenging task, as it requires the use of highly refined meshes to accurately
capture the geometric representation of all mixture components. Therefore, phase-field models present themselves
as a suitable choice for this type of modeling, once due to the intrinsic features of its variational formulation, they
already need refined meshes and do not present localization effects. Thus, the objective of this work is to model
a heterogeneous RVE and obtain its homogenized properties. This homogenization of the material parameters is
fundamental for the upscaling operation of multiscale analyses. All implementation were done in INSANE, an
opensource software developed by the Engineering Structures Department (DEES) of Federal University of Minas
Gerais (UFMG).
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1 Introduction

Majority of the materials used in civil construction are heterogeneous, however, the phenomenological ap-
proach is widely used to analyse structural models [1–3]. In this approach, the material is represented by its average
behavior, considering a larger observation scale, also called macroscale, where no distinction is made between the
different constituents of the mixture. Although this is a cheaper method of analysis from a computational perspec-
tive, the explicit representation of the geometry of each phase is important for understanding the complete process
of material degradation, since the propagation of cracks in heterogeneous materials can take shapes that would be
difficult to predict without considering the interactions between the different phases [4]. Thus, multiscale analysis
appears promising given that the behavior of the material’s constituents at the microscale provides information
about material degradation that affects the macroscopic response. In this work, the principles of FE²-method, also
known as multilevel finite element method [5, 6], were employed. This approach consists on the discretization by
finite elements of both macro and microscales, which are solved iteratively by exchanging information between
models.

For this type of analysis, it is very important to define a Representative Volume Element (RVE) that consists in
a material fraction whose dimensions are large enough to represent the whole and small enough to avoid structural
behaviour [7, 8]. The transferring of information between scales are done through an homogenization process that
consists in to apply the macroscale internal variables on the RVE boundary and to obtain the effective properties
of the mixture.

The objective of this work is to use a macroscopic strain state to construct a boundary value problem in
RVEs with a random distribution of particles and to obtain homogenised constitutive relations for the macroscale
problem. Although both macroscale and RVE consider a phase-field model for fracture, this work is in its early
stages, and therefore the results presented do not yet account for material degradation. The implementation was
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done in INSANE (INteractive Structural ANalysis Environment), an open source software developed in Java by the
Structural Engineering Department of the Federal University of Minas Gerais, and has been largely used by the
research group since 20021.

2 Phase-field models

Based on the variational approach of Griffith’s theory, Bourdin et al. [9] have rewritten the energy functional
of a solid body Ω in order to transform the sharp crack Γ in a smoothed damaged region B (See Fig. 1). This way,
the phase-field variable is inserted into the problem as a new degree of freedom through an additional equation.
That variable varies from zero to unity and quantifies the damage of the material.

(a) (b)

Figure 1. Comparison between (a) Griffith crack and (b) Phase-Field diffuse crack

Therefore, the finite element problem is now solved through a system of equations whose residual form is
given by:

r⃗uI =

∫
Ω

[B]
u,T
I σ⃗ dV − f⃗I = 0⃗I (1a)

r⃗ϕI = −
∫
B
[N]

ϕ,T
I

(
g′Ȳ +

1

C0l0
α′Gc

)
dV −

∫
B

2l0
C0

Gc [B]
ϕ,T
I ∇ϕ dV (1b)

where eq. (1a) is responsible to calculate the displacements (u) and eq. (1b) the phase-field (ϕ). The parameters of
eq. (1b) are related to the material and stand for:

• f⃗I is the external forces vector,
• σ is the stress tensor,
• g is called energetic degradation function and is responsible for degrading the constitutive tensor,
• α gives the shape for the degradation bandwitch,
• C0 is a constant, dependent on α, and calculated by 4

∫ 1

0
α−1/2(ϕ)dϕ,

• Ȳ is the effective crack driving force, and varies according to the considered constitutive model,
• l0 is related to the size of the degraded bandwith.

For more informations about the mathematical formulation of phase-field models see Wu et al. [10], Leão [11].

3 FE² strategy

The FE² strategy consists of solving the problem considering two scales of observation, here called macro
and microscales. The macroscale is represented by a FEM model whose properties comes from the microscale
through an homogenization process. Each integration point of the macroscale FEM model is associated to a
microscale FEM model, also called Representative Volume Element (RVE), in which the mixture heterogeneities
are geometrically represented. See Fig. 2.
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Internal
variables

Dual
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Figure 2. Representation of the homogenized macroscale and the heterogeneous microscale models. Observe that
a heterogeneous microscale model is associated for each macroscale integration point. The FE² process ocurrs by
transfering internal variables from macro to microscale and dual internal variables from micro to macroscale.

The interaction between scales occurs by applying boundary constraint and conditions to the microscale
model according to the multiscale constitutive model in order to represent the macroscale material point. In this
work, Neumann boundary conditions were adopted based on a linear displacement model on the RVE contour
[5, 12]. For this model, the displacements on the RVE boundary are calculated by:

u⃗ = ⟨[ε]⟩ [x⃗− ⟨x⃗⟩] (2)

where u⃗ is the boundary displacement, ⟨[ε]⟩ the macroscale strain tensor , x⃗ the boundary point and ⟨x⃗⟩ a reference
point.

3.1 Constitutive tensor homogenization

One of the challenging tasks of multiscale analysis is finding the homogenized constitutive tensor of the RVE
to be used at the macroscale level. This process of homogenizing a variable involves obtaining its average value in
order to provide an accurate estimate of the RVE’s behavior.

Starting from the definition of the homogenized constitutive tensor

〈
Ĉ
〉
=

∂ ⟨[σ]⟩
∂ ⟨[ε]⟩

dV, (3)

where ⟨[σ]⟩ is obtained by the volume average

⟨[σ]⟩ = 1

V

∫
[σ] dV, (4)

using the chain rule,
〈
Ĉ
〉

can be obtained by:

〈
Ĉ
〉
=

1

V

∫
∂ [σ] ([ε])

∂ [ε]
:

∂ [ε]

∂ ⟨[ε]⟩
dV (5)

But it is considered that, the RVE strain tensor [ε] can be decomposed into a sum of the homogenized tensor
and a fluctuation counterpart [ε̃] in such way that:

[ε] = ⟨[ε]⟩+ [ε̃] (6)
1More information on the project can be found at https://www.insane.dees.ufmg.br/.

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Maceió, Alagoas, November 11-14, 2024

https://www.insane.dees.ufmg.br/


Homogenization of a RVE using phase-field models

Substituting eq. (6) in eq. (5), and by the definition of Ĉ =
∂ [σ]

∂ [ε]
, it arrives to:

〈
Ĉ
〉
=

1

V

∫
Ĉ dV +

1

V

∫
Ĉ :

∂ [ε̃]

∂ ⟨[ε]⟩
dV (7)

The linearized weak form of the balance of linear momentum for the microscale is:

∫
δ [ε̃] : Ĉ : ∆ ⟨[ε]⟩ dV = 0 (8)

From the definitions of eq. (8), eq. (7) can be rewritten as:

〈
Ĉ
〉
= ĈTaylor − F̂ (9)

with the following counterparts

ĈTaylor =
1

V

assemb∑
elms

∫
Ĉ dV (10a)

F̂ =
1

V

assemb∑
elms

∫
le,T ke,−1le dV (10b)

le =

∫
BT Ĉ dV (10c)

where
∑assemb

elms represents an assembler operation over all elements (e) of the RVE, Ĉ is the RVE constitutive
matrix, ke is the element stiffness matrix and B is the dual internal variables operator.

4 Examples and results

In this section, preliminary results obtained from the homogenization process using the phase-field model
during the multiscale analysis will be presented. It is important to highlight that this is an in-progress work and
that the multiscale process as a whole is not yet resolved. The results presented in Tables 2 and 3 consist of the
homogenized constitutive tensor for one integration point, considering one of the first steps of a non-linear analysis,
and Table 4 shows the homogenized stress obtained before analysing the RVE. It is also worth noting that in the
analysed step, material degradation has not yet been observed, and thus the phase-field calculation does not affect
the results.

For the multiscale analysis, RVEs with a size of 65 mm and material parameters of Table 1 were considered.
All the RVEs were meshed using triangular elements with mean nodal distance of 1.5 mm. Five distinct random
particle distributions were examined, with particle volume fractions of 25% and 30%. The grading curve was
characterized by a Fuller parameter of 0.7909, and the aggregate sizes varied from 4.75 mm to 12.5 mm. See
Figs. 3 and 4.

The example of the L-shaped panel [13] was used to represent the macroscale of the problem. Due to the high
computational cost and the aim of solely analyzing the effect of different particle distributions on the variables
transported in the upscale and downscale processes, only one element was extracted from the L-panel mesh, as
highlighted in Fig. 2. The integration point of this element provided the strain state at a certain moment in the
analysis, given by ⟨[ε]⟩ =

{
6.8003× 10−5 8.3682× 10−5 5.4754× 10−5

}
. These values were applied as

Neumann boundary conditions in the various RVEs studied, and the dual internal variables included in the upscale
process were analysed.
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Table 1. Material parameters for RVE

Material Elasticity Modulus (E0) Poison’s rate (ν) Fracture Energy (Gc) Tensile strength (ft)

[N/mm2] [−] [N/mm] [N/mm2]

Aggregate 100000.0 0.20 0.1300 16.0
Mortar 21876.0 0.18 0.0018 3.48
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Figure 3. RVEs with random particle distributions for a volume fraction of 25%.
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Figure 4. RVEs with random particle distributions for a volume fraction of 30%.

Table 2. Homogenized values considering volume fraction of 25% and different particles distribution. The ho-
mogenized strains vector is ⟨[ε]⟩ =

{
6.8003× 10−5 8.3682× 10−5 5.4754× 10−5

}
. The therms [i,j] in the

header corresponds to the position in the constitutive matrix. Terms [2,3] and [1,3] are notably smaller than the
others and are therefore omitted from the table.

Distribution
ĈTaylor (×103 N/mm2)

〈
Ĉ
〉
(×103 N/mm2)

[1,1] [1,2] [2,2] [3,3] [1,1] [1,2] [2,2] [3,3]

1 42.016 8.063 42.016 16.976 30.033 5.595 29.748 11.964
2 42.398 8.142 42.398 17.128 29.760 5.682 30.407 12.068
3 42.043 8.070 42.043 16.987 29.838 5.642 29.801 12.014
4 42.083 8.078 42.083 17.002 29.822 5.683 29.845 12.035
5 42.044 8.069 42.044 16.988 29.795 5.637 30.019 12.019

Average 42.117 8.085 42.117 17.016 29.849 5.648 29.964 12.020
Deviation 0.159 0.032 0.159 0.063 0.107 0.037 0.268 0.038

The obtained results indicate that the homogenized constitutive relations exhibit only minor variations, sug-
gesting minimal changes with respect to the random distribution of aggregates within the same particle volume
fraction. This consistency is crucial for selecting a sample as a characteristic RVE. It is observed that the values
of the homogenized constitutive tensor are significantly lower compared to those of the Taylor constitutive tensor.
These results corroborate with Kouznetsova et al. [14], who asserted that the Taylor constitutive model, or con-
stant deformation model in the RVE, tends to overestimate material stiffness. This discrepancy underscores the
importance of using accurate homogenization techniques to ensure the reliability of multiscale analyses.

Table 4 presents the stress results to be applied to the macro-scale integration point in the upscale operation.
Again, small variations are observed for different particle distributions. As the deformation applied to the RVEs is
the same, particle fractions result in higher values in the constitutive tensor and, consequently, higher stress values.
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Table 3. Homogenized values considering volume fraction of 30% and different particles distribution. The ho-
mogenized strains vector is ⟨[ε]⟩ =

{
6.8003× 10−5 8.3682× 10−5 5.4754× 10−5

}
. The therms [i,j] in the

header corresponds to the position in the constitutive matrix. Terms [2,3] and [1,3] are notably smaller than the
others and are therefore omitted from the table.

Distribution
ĈTaylor (×103 N/mm2)

〈
Ĉ
〉
(×103 N/mm2)

[1,1] [1,2] [2,2] [3,3] [1,1] [1,2] [2,2] [3,3]

1 45.865 8.860 45.865 18.503 31.201 6.098 31.307 12.714
2 46.088 8.905 46.088 18.592 31.444 6.109 31.348 12.712
3 46.330 8.954 46.330 18.688 31.865 6.053 31.697 12.752
4 45.885 8.862 45.885 18.512 31.784 5.927 31.572 12.582
5 45.881 8.863 45.881 18.509 31.330 6.085 31.497 12.696

Average 46.010 8.889 46.010 18.561 31.525 6.054 31.484 12.691
Deviation 0.201 0.041 0.201 0.080 0.288 0.074 0.161 0.064

Table 4. Homogenized stress values.

Distribution

Particle fraction

25% 30%

σxx σyy σxy σxx σyy σxy

1 2.347 0.996 2.009 2.433 1.029 2.107
2 2.327 0.996 2.042 2.454 1.033 2.110
3 2.331 0.991 2.004 2.493 1.055 2.142
4 2.328 0.990 2.012 2.470 1.032 2.123
5 2.336 0.992 2.010 2.441 1.029 2.120

Average 2.334 0.993 2.015 2.458 1.036 2.120
Deviation 0.008 0.003 0.015 0.024 0.011 0.014

5 Conclusions

This work presents an initial study on modeling a heterogeneous material using multiscale analysis to deter-
mine the initial damage that emerges at the microscale, resulting from interactions between different constituents,
and its impact on the macroscale. To model all the mixture constituents, a refined mesh is required. The phase-field
model was selected for this purpose because it demonstrated stability and did not exhibit localization effects. From
this, a rigorous study was made to obtain the equations for homogenizing the microscale constitutive tensor and
for transferring information between the two scales. All the implementation was carried out using INSANE.

In the analysis, the behavior of the Taylor constitutive matrix, the homogenized constitutive matrix, and
the stress tensor was examined using a multiscale approach. In this analysis, an L-shaped panel served as the
macroscale model and the microscale model of an specific integration point was observed (See Fig. 2). In the
microscale model, for modeling the RVE, two different particle fractions were considered, and for each fraction,
five different random distributions were analysed.

The results indicate that the different random distributions have minimal impact on the obtained values for
both the constitutive matrix and the stress tensor. It is important to note, as previously described by Kouznetsova
et al. [14], that the Taylor constitutive tensor tends to exhibit higher values than the homogenized constitutive
tensor. Regarding the results for the fluctuation matrix (see F̂ in eqs. (9) and (10)), whose terms can be calculated
by the difference between

〈
Ĉ
〉

and ĈTaylor shown in Tables 2 and 3, its values increases as the particle fraction
increases. In an analysis with same mesh and no material variation (not presented in this article) the Taylor
constitutive matrix is the same as the homogenized constitutive matrix, i.e. the fluctuation component is zero.
This indicates the relationship of the component F̂ with the heterogeneities of the medium. Finally, it could
also be observed that, as expected, increasing particle fractions induces higher constitutive matrix values and,
consequently, higher stresses.
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