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Abstract. The nonlinear acoustic wave equation with source term of the P-wave propagation in heterogeneous
fluid (Chacaltana [1], Peres [2]) is extended and solved numerically by the Finite Element Method (FEM). To
minimize the residue in each element, the Weighted Residual Method (Petrov-Galerkin) is used. Linear and
parabolic basis interpolation functions are implemented. A Ricker-type source (Chacaltana [1]; Picolli [3]) is
used to generate the P-wave. The Neumann reflective (natural) and non-reflective ABC (Absorbing Boundary
Condition)  boundary  conditions,  presented  in  Frasson  [4],  were  implemented  and  tested  in  rectangular  and
circular domains. The numerical code is written in Fortran 95 language and the Octave graphical interface is
used to analyze the results. The GMSH mesh generator (v. 4.8.4) is used to represent the continuous domain by a
set of discrete points that group together forming a non-uniform mesh of triangular elements. Numerical tests are
carried out to verify the maintenance of symmetry after multiple reflections and the effectiveness of  1st and 2nd
order ABC. The numerical results show a good agreement with existing results in the literature.

Keywords:  Non-linear  Equation  of  Acoustic  Wave;  Heterogeneous  fluid;  Finite  Element  Method;  Ricker
wavelet.

1 Introduction
Understanding the transformations of  the P-wave during its  propagation  in  heterogeneous  media is  of

greatest importance in different areas of science. Linear modeling for P-wave propagation in homogeneous and
heterogeneous media has been addressed by several authors (Chacaltana [1]; Picolli [3];  Araujo [5]; Costa [6];
Valente [7]; Neto [8]). However, the non-linear modeling of the P-wave in a heterogeneous medium is still a
challenge, particularly when it comes to finding analytical solutions and developing boundary conditions that
allow the wave to exit without causing reflection. Acoustic nonlinearity has been a focus of investigation since
the  last  century.  Among  the  researchers,  Fubini-Ghiron  (apud  Campos-Pozuelo  [9])  proposed  an  explicit
solution  for  progressive  plane  waves.  Later,  analytical  models  for  cylindrical  and  spherical  waves  were
developed by Blackstock [10]. Comprehensive reviews on the development of acoustic wave nonlinearity can be
found in Beyer [11],  Lauterborn  [12],  Pierce  [13] and Garrett  [14].  Hamilton & Blackstock [15] presented
analytical approximations to describe the nonlinear behavior of plane waves.

Assuming  that  the  understanding  of  Acoustic  Wave  propagation  becomes  increasingly  refined  by
considering the nonlinearity of acoustic phenomena, the present work aimed to derive and numerically solve the
2D non-linear Acoustic Wave equation for heterogeneous fluid media (Chacaltana [1]; Peres [2]) using the Finite
Element  Method  (FEM)  combined  with  the  Weighted  Residuals  Method  (Petrov-Galerkin)  and  test  the
performance of the 1st and 2nd order ABC boundary condition. A Ricker-type source was used (Picolli [3]). The
2D mesh, composed of first-order triangular elements, was generated using the GMSH mesher (v. 4.8.4), and
Neumann and ABC boundary conditions (Bamberger  [16];  Frasson, [4])  were  implemented.  The results are
presented, and the performance of the 1st and 2nd order ABC, applied to the nonlinear solution of the acoustic
wave, is discussed. This work expands the 1D modeling presented in Peres [2] to a 2D modeling, to investigate
the propagation of the P-wave in a non-homogeneous medium considering the effects of nonlinearity in the
modeling.  The  improvement  and  development  of  the  computational  code  is  tested  to  verify  the  symmetry
imposed by the geometry and to investigate the influence of open boundary conditions. As an initial step towards
understanding the propagation of  the P-wave,  for  example,  in seismic oil  exploration,  in  understanding the
Earth's interior and in the health area for the technological development of processes such as ultrasonography.
This work verifies the maintenance of symmetry after multiple reflections and the effectiveness of 1st and 2nd
order ABCs in square and circular geometries.
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2     Nonlinear acoustic wave equation for an inhomogeneous fluid
The acoustic wave, also known as pressure wave (P-wave),  is a mechanical  wave that is related to the

pressure variation in the medium caused by a mechanical disturbance. The equation for the propagation of the P-
wave in a compressible fluid is deduced from the laws of fluid mechanics and the principles of thermodynamics.
Following Chacaltana  [1]  and Piccoli  [2],  for a compressible fluid and an isentropic process,  the equations
representing  conservation  of  mass,  conservation  of  momentum,  and  the  equation  of  state  can  be  written,
respectively, in the mixed form as:

d ρ
dt

+ρ ∇ . u⃗=Ṁ (1)

ρ du
dt

=−∇ p (2)

E=ρ c2 (3)
Where c [c2=(∂ p

∂ ρ
)

s] is the P-wave velocity during the isentropic process, while E [E=ρ dp
d ρ ] is the fluid's

compressibility modulus, which describes the expansion (contraction) behavior of a small volume of fluid due to
a decrease (increase) in pressure (Lauterborn [12]), where ρ stands for the specific mass, p for the pressure field,
u for the velocity field and  Ṁ acts as a mass source. Using the definition of the compressibility modulus,
equations (1) and (2) can be written in non-conservative form as

ρ
E

[ ∂ p
∂t

+(u⃗ . ∇) p ]+ρ∇ . u⃗=Ṁ (4)

∂ u⃗
∂t

+(u⃗ .∇) u⃗=− 1
ρ ∇ p (5)

By deriving equation (4) in relation to time, rearranging and making use of equation (5), the equation for
pressure is obtained after manipulation, as long as the fluid velocity is known.

∂2 p
∂ t2 + ∂

∂ t
(u⃗ .∇ p)−ρ c2 ∇ .( 1

ρ
∇ p)−ρ c2 ∇ .(u⃗ .∇ u⃗)=P̈ f

(6)

When obtaining equation (6) it is considered that the compressibility modulus E (ρc2) does not vary with
time but can vary in space. For a homogeneous fluid, equation (6) reduces to the classical wave form if the non-
linear terms are disregarded and there is no pressure source term, P̈ f .

2.1 Initial and Boundary Conditions
In  dynamic  problems  that  evolve  over  time  there  is  a  need  to  provide  initial  conditions.  Two initial

conditions are provided for pressure and one initial condition for velocity, and they refer to the fact that there is
no velocity induced by pressure if it is zero at these 2 instants of time. The initial conditions for equations (5)
and (6) at time t⩽t0 are:

u⃗ (x , y , t0)=u⃗0=0  and p(x , y , t0)=p0=0 (7)

p(x , y , t )=0  for all t<t0 (8)
Two types of boundary conditions are implemented,  the (natural)  Neumann boundary condition which

causes a perfect reflection when the Neumann condition is equal to zero at the boundary.
∇ p . n̂=0 (9)

And, the 1st and 2nd order ABC, Frasson [4], to radiate the waves outside the domain.

∇ p . n̂+ 1
c

∂ p
∂ t

=0 (10)

∂ (∇ p . n̂)
∂ t

+ 1
c

∂2 p
∂t 2 − c

2
∇ tan

2 p =0 (11)

For the corner boundary condition, the formulation proposed in Bamgerger [16] was implemented.
α
c

∂ p
∂t

+ ∂ p
∂ x

+ ∂p
∂ y

=0 (12)

where α = 3/2.
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2.2 Source term
To generate the acoustic wave, a Ricker-type source (Piccoli [2]) was used. This source is made up of a

pulse characterized as “Mexican hat”, obtained from the second derivative of the Gaussian function.

P̈ f (t )=t 0 e(−0.25 π f c
2 t0

2) (13)

Here t0=t−2√π
f

 is the time for the generated pulse and fc is the central frequency, defined in terms of
the cutoff frequency f, f c=3 √f . This source was chosen due to its simple shape and implementation, helping
in the interpretation of the results. The smoothing provided at the beginning of the simulation avoids numerical
noise and wave distortions. In addition, to being widely used in seismic, since it is very effective in describing
the signal spectrum as a linear combination of the Ricker wavelet spectra (Gholamy [17]; Wang [18]).

2.3 Stability Criterion
To guarantee the numerical stability of the model, the criterion as proposed by Oden [19] for non-linear

hyperbolic equations was considered. Where h is the element size and cmax is the maximum wave speed.

Δ t< √2h
2cmax

(14)

3     Finite Element Method
To achieve the numerical solution of the non-linear Acoustic Wave equation (6), the equation of motion (5)

is solved together. Both are solved in the same time loop, in such a way that the equation of motion (5) is first
solved so that the values of u and v become known in the solution of the wave equation (6). And consequently,
the  pressure  gradient  becomes  known to  solve  the  equation  of  motion  (5)  in  the  next  time  step.  For  the
discretization  process,  FEM  and  Weighted  Residual  Method  (Petrov-Galerkin)  are  applied  through  the
development of the product with weight functions w and solved the inner product over the entire 2D domain.

< ∂ u⃗
∂t

, w >=<−1
ρ ∇ p, w >−< u⃗ . ∇ u⃗ , w> (15)

∫
s

w ∂ u⃗
∂ t

ds=−∫
s

w 1
ρ ∇ p ds−∫

s

w u⃗ .∇ u⃗ds (16)

On the right side of equation (16), there is the term referring to the pressure gradient, which is calculated
by equation (6) and the advective term, representing nonlinearity. The nonlinearity is worked in such a way as to
bring it closer to a linear system considering u and v of the previous time step “n-1”. Therefore, the shorter the
time interval for each time step, the better the approximation tends to be.

∂
∂ t∫s

w u⃗ ds=−∫
s

∇ pn−1 w
ρ ds−∫

s

w(un−1 ∂
∂ x

+vn−1 ∂
∂ y

) u⃗ds (17)

Having applied the Weighted Residuals Method (Petrov-Galerkin), it is considered that the weight function
w (Ni) has the same value as the approximation basis function from the FEM (Nj).

∂
∂ t ∑j=1

n

ui∫
s

N i N j ds=−∑
j=1

n

p j
n−1∫

s

N i
ρ

∂ N j

∂ x
ds−∑

j=1

n

u j∫
s

(un−1 N i
∂ N j

∂ x
+vn−1 N i

∂ N j

∂ y
)ds (18)

∂
∂ t ∑j=1

n

v i∫
s

N i N j ds=−∑
j=1

n

P j∫
s

N i
ρ

∂N j

∂ y
ds−∑

j=1

n

v j∫
s

(u N i
∂N j

∂ x
+v N i

∂N j

∂ y
)ds (19)

Where  n  in  sum is  the  number  of  nodes.  To  discretize  the  temporal  derivative,  the  backward  finite
difference method was used. Thus, we arrive at the components of the equation of motion in  discrete form:

{u }n−{u}n−1

Δ t ∫
s

N i N j ds=−{p }n−1∫
s

N i
ρ

∂N j

∂ x
ds−{u }n−1∫

s

(un−1 N i
∂ N j

∂ x
+v n−1 N i

∂N j

∂ y
)ds (20)

{v }n−{v}n−1

Δ t ∫
s

N i N j ds=−{ p}n−1∫
s

N i
ρ

∂ N j

∂ y
ds−{v }n−1∫

s

(un−1 N i
∂N j

∂ x
+v n−1 N i

∂N j

∂ y
)ds (21)

In matrix form, the final discrete form of the equation of motion (22) and (23) is expressed.
{u}n[ Mu]=−({P }n−1[R eu ]−{u }n−1[ Mdu])Δt +{u }n−1[ Mu] (22)

{v }n[ Mu]=−({P}n−1[R ev ]−{v }n−1[ Mdv ])Δ t +{v }n−1[ Mu] (23)
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Where the matrix  [Mdu]   and  [Mdu]  represents the non-linearity of the equation of motion.  The same
procedure was applied to the nonlinear acoustic wave equation (6), and the final form was achieved (24).

{P }n+1 [M ]=
Δ t2 P f

ρ −Δ t2[K ]{P}n+2 [M ] {P }n−[M ] {P }n−1−[Δ t [D] {P }n+Δt [D ]{P }n−1−Δ t2[Kd ] {u+v }n] (24)

Where the matrices  [D] and [Kd] represent the non-linearity of the equation, that is, they depend on the
induced velocity components u and v calculated through equations (22) and (23).

4     Test Cases
The discrete Finite Element model has been developed by the authors of this work. The code was written in

Fortran  95  language.  Five  tests  were  developed  to  evaluate  the  numerical  model  and  the  ABC  boundary
conditions. The first test aims to evaluate the symmetry of the results after multiple reflections of the P-wave in a
square geometry, with the generation of the P-wave in the geometric center. In Test 2, the same square geometry
is used, with the source at the geometric center. The test aims to evaluate the first and second order absorbing
boundary conditions using the linear  and non-linear  formulation of  P-wave propagation.  Test  3  considers  a
rectangular geometry composed of two layers with different physical properties. The objective here is to evaluate
the reflection of the wave when it is propagating from one medium to another. In Test 4, P-wave propagation is
performed with the nonlinear model in a square geometry to compare the effectiveness of the first and second
order absorbing boundary condition and the interaction of the P-wave with the corners. Finally, Test 5 has the
same purpose as Test 4, but is carried out in a circular geometry. Test data can be seen in Table 1. For all cases,
the mesh was constructed using first-order triangular elements of 10m and the time interval was 10-3s.

Table 1. Parameters used in the five tests for the propagation of the P-wave generated by a pressure source.
Parameters Test 1 Test 2 Test 3 Test 4 Test 5

Mesh gemometry Square Square Square Square Circular

Boundary Condition Neumann 2nd order ABC 2nd order ABC 1st & 2nd ABC 1st & 2nd ABC

fc 30Hz 30Hz 30Hz 30Hz 30Hz

Dimensions 500mx500m 500mx500m 800mx500m 500mx500m 500m

xf / yf 250m/250m 250m/250m 200-500m/250m 250m/250m 250m/250m

cmax 1500m/s 1500m/s 3000m/s 1500m/s 1500m/s

cmin 1500m/s 1500m/s 1500m/s 1500m/s 1500m/s

dt 10-3 s 10-3 s 10-3 s 10-3 s 10-3 s

5     Results and Discussion
In Test 1, the total reflection of the nonlinear acoustic wave with the expected symmetry was verified

(Figure 1). The Neumann condition satisfactorily simulated a rigid wall, causing the peak to reflect as a peak and
the trough as a trough. At t = 0.556s (a), we see wavefront that have just reflected off the wall and are already
returning. By t = 1s (b), the reflections have interacted with each other multiple times, forming the symmetrical
pattern in question. A seismogram was also generated to better visualize the reflections, capturing the lateral and
frontal reflections based on the pressures measured along a line intersecting the source. The pulse is generated
around t = 0.3s, reaching the edge around t = 0.5s. From this moment on, multiple reflections can be observed,
indicated below the dashed red line (c).

Figure 1. Non-linear acoustic wave propagation with Neumann condition (rigid wall) at t = 0.556s (a) and t = 1s
(b). In (c), we have the seismogram.
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In Test 2, no significant difference was detected in the application of the second-order ABC to the linear
and nonlinear  solutions  of  the  acoustic  wave  (Figure  2).  This  result  is  attributed  to  the  low magnitude  of
nonlinearity compared to the simulated pressure, given that the acoustic pulse induced a velocity on the order of
10−7m/s. This occurs because the formulation used takes into account the small amplitude theory, resulting in the
non-linearity having a very small effect.  The efficiency of the second-order ABC proved to be satisfactory for
both solutions.

Figure 2. Linear and non-linear acoustic wave propagation with 2nd order ABC (Absorbing Condition).

In Test 3, the pressure source was positioned in two distinct regions of the mesh: xf=200m and xf=500m. In
the  simulation  for xf=500m,  the  domain  was  divided  into  two  layers:  ρ1=1000kg/m3  (0  to  200m)  and
ρ2=2500kg/m3 (200m to 800m). In the second, where xf=200m, the domain was divided into ρ1=1000kg/m3 (0 to
400m) and ρ2=2500kg/m3 (400m to 800m). The wave velocity was 1500m/s in ρ1 and 3000m/s in ρ2. In this test,
it was emulated water and sedimentary rock, bringing the simulation closer to a realistic case.

Figure 3. Non-linear acoustic wave propagation in a heterogeneous medium by layer. In the first case (a), we see
the wave being generated in layer 2 (200m to 800m /  ρ2=2500kg/m³) and propagating through layer 1 (0m to
200m /  ρ1=1000kg/m³).  In the second case (b),  we see the wave being generated in layer  1 (0m to 400m /
ρ1=1000kg/m³) and propagating through layer 2 (400m to 800m / ρ2=2500kg/m³).

In this third test, the phenomena of reflection and refraction of the acoustic wave due to the change of
medium were  observed.  In  both propagation directions,  that  is,  from medium  ρ1  to  ρ2  or from  ρ2  to  ρ1, the
reflection preserved the phase of the wave. Additionally, a decrease in the wavelength (λ) was observed when
entering the less dense medium (smaller velocity) and an increase in λ when transitioning to the denser medium
(bigger velocity), as predicted by theory. The second-order ABC demonstrated good absorption in both media.

Through test 4, it was possible to verify a higher efficiency of the second-order ABC method compared to
the first-order one in absorbing acoustic waves in square meshes.  The results of this test  showed improved
absorption by the second-order ABC due to its better handling of tangential components of the wave propagation
vector, particularly in minimizing reflections at domain corners, as can be seen in Figure 4.
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Figure 4. Non-linear acoustic wave propagation with 1st and 2nd order ABC (Absorbing Condition). 

This difference in absorption can also be observed through the seismogram and the wave capture at a single
point in the mesh at P=(140,250) over time (Figure 5).

Figure 5. Seismogram of the non-linear Acoustic Wave with 1st and 2nd order ABC (a) (b). Comparison of the
reflection over time at a fixed point (c).

In the final test, the nonlinear Acoustic Wave was propagated in a homogeneous circular mesh. The results
showed a very similar performance between the first-order and second-order ABC boundary conditions (Figure
6). Unlike the square mesh, in a circular domain, the corner problem is automatically eliminated. This means that
the term related to the tangential components of the wave vector, present in the second-order ABC formulation,
does not have any influence in this case. With the source positioned exactly at the center of the domain, all wave
rays  reach  the  surface  in  a  perfectly  orthonormal  manner.  Thus,  the  absorption  of  the  second-order  ABC
becomes close enough to that of the first-order ABC.

Figure 6. Non-linear acoustic wave propagation with 1st and 2nd order ABC (Absorbing Condition) at circular
mesh.

6      Conclusions
The numerical implementation of the nonlinear acoustic wave equation by the finite element method was

successful. The conservation of symmetry of the results after the P-wave reflects numerous times in a square
geometry was verified using a mesh composed of non-uniform triangular elements, the same was verified if the
geometry is circular. Since the pressure source has a maximum amplitude around unity, it is expected that the
non-linear model of the present work behaves well with the results obtained by the linear model. In non-circular
geometry, the second-order Absorbing Boundary Condition (ABC) is more effectiveness than the first-order one,
radiating acoustic waves beyond the finite domain. This effectiveness  is  expected because the second-order
formulation includes a term to treat components tangential to the boundary. In a circular mesh, the absence of
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corners resulted in similar performance between first and second order ABCs. In this case, with the source in the
center of the circle, the acoustic wave impacts perpendicularly to the boundary.
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