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Abstract. Soil deformability can cause considerable changes in support reactions and stresses, which are funda-
mental for the structural design. In turn, the changes in the loads transmitted to the soil causes the deformations
presented by the soil to change leading to a coupled problem. This work presents a methodology for numeri-
cal analysis of spatial trusses interacting with flexible stratified soils considering geometic nonlinearities. The
truss analysis follows a total Lagrangian position-based finite element formulation, while the soil domain anal-
ysis is based on fundamental cases of the theory of elasticity considering the characteristics of the soil based on
geotechnical field tests. The computational code for dynamic analysis of three-dimensional trusses is verified using
analytical and numerical examples from the literature, showing compatible results. In the context of soil mechan-
ics, the model is also verified through examples, considering homogeneous stratified soils with three-dimensional
stress propagation. Finally, numerical examples are studied considering the soil-structure interaction, where the
influence of the soil-structure interaction on the results is evaluated.
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1 Introduction

In the field of Soil-Structure Interaction (SSI), numerical solutions for analyzing these domains have been
proposed using the Finite Element Method (FEM), as developed by Farias [5], or by coupling the Boundary El-
ement Method (BEM) with FEM, as demonstrated by Luamba [6], Silva [7], Silva [8], and Ramos [9]. While
these techniques are mathematically robust, they come with high computational costs. Therefore, alternative for-
mulations with lower computational costs, such as the one proposed in this work, offer a more viable solution for
analyzing the effects of soil-structure interaction in conventional structures and design practice. In this work, we
present an analytical-computational solution for the analysis of three-dimensional trusses - soil interaction consid-
ering geometric nonlinearities. The proposed formulation aims to be more practical and with lower computational
costs than the fully numerical approaches. In this sense, solutions from the Theory of Elasticity are used to evaluate
the propagation of stresses in the soil and a total Lagrangian FEM formulation for trusses under small or large dis-
placements is used to describe the structural behavior. Both, structural and soil mechanics models are separatelly
verified by numerical examples compared to the literature, and then coupled and tested. The resulting computa-
tional code has several practical applications in civil structures, such as the analysis of soil-structure interaction in
metal warehouses with trusses, domes with 3D trusses and arches with trusses.

2 Finite element formulation for trusses

The adopted formulation for geometric nonlindear analysis of 3D trusses follows a total Lagrangian descrip-
tion written in terms os current nodal positions, as presented by Coda [1] and Carrazedo [10]. To represent the
complete soil-structure problem, we also make use of springs associated to the trusses, so that both, 3D truss and
spring elements are represented in Figure 1.

The total mechanical energy functional for the problem, adopting elements with linear approximation, is
given by:
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Figure 1. Space truss and spring structural elements.
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where Fext refers to the vector of nodal external forces; yh denotes the vector of current positions; A0 is the truss
bar cross-sectional area; l0 is the length of the truss bar element and uε is the specific strain energy of the truss
element. Adoppting the Saint-Venant-Kirchhoff constitutive model, we have uε = Emat
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where S = EmatE refers to the second Piola-Kirchhoff tensor; k is the direction and β is the node.

3 Soil mechanics

The formulation for the soil analysis is based on an elastic continuum approach to evaluate stress propagation,
as described by Pinto [2], Sales [11], and Rauecker [4]. This technique employs Newmark’s solution from the
Theory of Elasticity to determine the stress value in the soil at a depth z resulting from a surface load applied over
an area a× b.

Although soil in general does not exhibit full reversibility after being subjected to deformations as occurs in
elastic materials, there is a proportionality between stresses and deformations up to a certain stress level, as pos-
tulated by Pinto [2]. Consequently, a constant modulus of elasticity can be considered representative for moderate
stress variation levels.

The stress increment at any point is given by ∆σ = ∆σ0IE , where IE is the Newmark factor, and ∆σ0 is
the stress increment at the base of the foundation. The factor IE is calculated as the composition of the Newmark
solution: IE = IEFGH + IEFIK + IEHLJ + IEKDJ for the case of the point internal to the loading area and
IE = IEFGH − IEKLH − IEFIJ + IEKDJ for the external case as shown in Figure 2.

The equation (3) allows you to calculate each of the geometric factors IEFGH , IEFIK , IEHLJ , IEKDJ , ....
The incidences EFGH, EFIK, EHLJ, ... indicate the area considered in the surface loading, as illustrated in Figure
2. The factors m and n are directly determined from the definition of this loaded region.
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with the m and n factors being symmetrical; the m coefficient is defined as the ratio between the smallest side, b,
of the area loaded on the surface and the depth, z; the n factor is defined as the ratio between the largest side, a,
and the depth, z.

The (3) equation is the formula for calculating the geometric parameters at the vertices IEFGH , IEFIK ,
IEHLJ , ... By applying a superposition of effects, a geometric factor IE can be calculated at any point of interest.
In turn, this factor is directly related to the increase in stress at a given depth z by ∆σ = ∆σ0IE . Therefore, it
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Figure 2. Composition of the Newmark solution for any position, being (a) for a point inside the loading area; (b)
point outside the loading area.

is necessary to make a composition of loading areas, as shown in Figure 2 (a) for internal points and Figure 2 (b)
for points external to the support. Configuration (a) is used to evaluate the loads on the support itself, while case
(b) is used to determine the stress increase on the other supports. Note that the areas of influence determine the
geometric parameters and their composition determines the increase in stress ∆σ at a given depth due to surface
loading ∆σ0.

With the value of the total increment in stress at a given depth below the support, the settlement of each
support can be determined by

r =

m∑
i=1

n∑
j=1

∆σij∆Hij

Ei
. (4)

where r term is the total displacement for any given support. The limits m and n refer respectively to the number
of layers in the soil profile of the support, and i to the number of sub-layers in the discretization of layer. The
term ∆σij refers to the total stress increase (due to the stresses of the support itself and of the others) in layer i of
sublayer j. The term ∆Hij refers to the thickness, in layer i, of sub-layer j. Figure 3 illustrates this discretization
of soil layers into sub-layers. The term Ei refers to the modulus of elasticity of the soil layer. For more details it is
recommended to consult Sales [12], Poulos and Davis [13] and Alves [14].

The total settlement of a support is given by the sum of the total displacements of each layer of the stratified
soil profile, while the total settlement of a layer is the result of the sum of the displacements of each sub-layer from
the adopted discretization. While the number of layers depends on the soil profile below the support, the number
of sub-layers is chosen by the designer in the data input. The greater the number of sublayers, the more refined the
procedure.

3.1 Technique for soil-structure coupling

The coupling technique consists of making the stresses of the structure compatible with the geotechnical
displacements of the soil. This is done by means of an iterative soil-structure loop that makes the soil displacements
predicted by soil mechanics compatible with those applied to the structure. The loop is run until the convergence
criterion is reached, i.e. until the residual is minimal. This technique makes it possible to promote the equilibrium
of the structure in the deformed condition of the soil, resulting in an analysis of the stresses that is more compatible
with reality.

After calculating the settlements using soil mechanics and having the values of the support reactions, it is
possible to determine the new displacement field of the structure and the new stiffness matrix of the soil mass.
Modifying the stiffness matrix consists of modifying the support conditions a priori, where there is calculated
geotechnical settlement and non-displaceable support, the automatic change to an elastic support is performed.
With this change, it will be necessary to renumber the degrees of freedom of the structure and recalculate the
stiffness matrix of the structure, considering a spring support in place of the initial non-displaceable support.

These new matrices are calculated internally in the program from the modification of the support conditions,
followed by the application of the functions for assembling the degrees of freedom of the structure and the stiffness
matrix of the structure, considering the new state of the structure with spring support. The coefficients of these
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Maceió, Alagoas, November 11-14, 2024



CILAMCE-2024 (Geometric nonlinear analysis of SSI with trusses using positional formulation)

Figure 3. Discretization of the stratified soil mass.

springs are also calculated automatically, from the relationship between the support reactions and the geotechnical
settlements. With the values of the settlements imposed on the supports updated, the modification of the other
dependent matrices can be carried out by calling the assembly functions of such matrices. Therefore, the program
promotes the interaction between the soil and the structure in a partitioned manner, seeking equilibrium in the
deformed condition of the soil.

4 Results and analysis

This section presents the results of the computational implementation. The structural formulation for space
trusses has been implemented and verified for large displacements and in terms of 3D geometry. The code for
the soil was checked in terms of the total settlement in the foundation. At the end, an example of Soil-Structure
Interaction is presented in a 3D dome balancing the deformed condition of the structure and the soil.

4.1 Structural analysis

Figure 4 (a) shows a pendulum that will be used to check the non-linear implementation of the structure. Us-
ing a truss bar with high stiffness and negligible mass, it is possible to simulate this problem with the implemented
truss program. Figure 4 (b) shows that the results obtained are compatible with the analytical non-linear solution.

Figure 4. Nonlinear pendulum modeled by the implemented truss program
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Figure 5 shows an example for three-dimensional verification of the implementation. The displacement in
the center was calculated as 1.14869 x 10−4m. The same result was obtained in the LESM program, resulting in
good indications for the implementation made.

Figure 5. Dome with 3D truss

4.2 Soil analysis

Figure 6 shows an example of a stratified soil profile for checking soil implementation. The displacement
of the 15 m massif was calculated as 19.19 mm, 99% compatible with the reference value of 19.18 mm given by
Sales [11].

Figure 6. Implementation Verification for Stratified Soils

4.3 Soil-structure interaction analysis

Figure 7 (a) shows an example for the analysis of soil-structure interaction. The structure model is the same
as the dome in Figure 5. The soil profile used is relative to a real case used in the calculation of the foundation of a
34-storey building located in the Marista sector of Goiânia (Goiás in Brazil) as described by MUNDIM et al. [3].
Figure 7 (b) shows the structure in the deformed configuration. It is noted that the supports also move, depending
on the deformation of the soil. In this sense, the structure is in equilibrium both in its own deformed configuration
and in that of the soil, resulting in a model that is more compatible with the boundary conditions of a structure.

In addition to analyzing the displacement field, the spring coefficients compatible with this geometry and
the given soil profile were also calibrated. The kspring = 1.638x 105 N/m results in a mechanical analog for the
deformation of the soil with this structural topology. Note that this value depends not only on the soil profile, but
also on the structural configuration, and is only obtained at the end of equilibrium in the deformed condition.
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Figure 7. Example for the analysis of soil-structure interaction.

5 Conclusions

The proposed methodology for geometrically nonlinear analysis of soil-truss structure interaction considering
a finite element formulation for 3D trusses dynamics coupled to a analytical model for soil mechanics revealed
to be a relatively simple, practical and robust tool. From the results presented, one can observe that the finite
element formulation adopted for describing the spatial trusses is robust and suitable for the scope of soil-structure
interaction. On the other hand, adopting a simplified model based on the theory of elasticity for the soil ensures
low computational cost and practicity to the resulting computational code. Furthermore, the spring coefficient
calibration allows obtaining precise mechanical models for the analysis of SSI.

Acknowledgements. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior - Brasil (CAPES) - finance code 001 and by Brazilian National Council for Research and Technological
Development (CNPq) - grant -314045/2023-6.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.

References

[1] H. B. Coda. O Método dos elementos finitos posicional: sólidos e estruturas - não linearidade geométrica e
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UFG, Universidade Federal de Goiás, Escola de Engenharia Civil e Ambiental, Goiânia, 2018.
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Maceió, Alagoas, November 11-14, 2024



T. R. Carvalho, H. B. Coda, R. A. K. Sanches

[5] R. S. Farias. Análise estrutural de edifı́cios de paredes de concreto com a incorporação da interação solo-
estrutura e das ações evolutivas. PhD thesis, Escola de Engenharia de São Carlos, Universidade de São Paulo,
São Carlos, 2018.
[6] E. S. Luamba. Formulação MEC/MEF para a Análise da Interação Solo Estratificado/Estrutura e da Esta-
bilidade da Estaca. PhD thesis, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos,
2022.
[7] R. C. S. Silva. Análise da interação estaca inclinada e o solo via combinação mec/mef. Master’s thesis, Escola
de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2020.
[8] W. Q. Silva. Sobre análise não linear geométrica de edifı́cios considerando o empenamento dos núcleos
estruturais e a interação solo-estrutura. PhD thesis, Escola de Engenharia de São Carlos, Universidade de São
Paulo, São Carlos, 2014.
[9] A. P. F. Ramos. Análise da interação estaca-solo-superestrutura com o acoplamento MEC-MEF. PhD thesis,
Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2013.
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