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Abstract. Problems in structural engineering involving geometric nonlinearity are extensively studied from 

numerical and experimental perspectives. From a numerical modeling perspective, to investigate the resistance 

mechanisms that arise in structures when subjected to significant displacements, a mathematical formulation that 

is capable of numerically representing the phenomena that arise during the nonlinear behavior is necessary. This 

work addresses the problem of planar frame structures involving geometric nonlinearity using a formulation 

available in the literature of the Finite Element Method (FEM) based on positions and unconstrained vectors as 

degrees of freedom. In this formulation, nodal positions are used as degrees of freedom of the problem and the 

Saint-Venant-Kirchhoff constitutive law for the plane stress state is used. Instead of the FEM formulation for 

displacements, the positional formulation adopted requires strategies for connecting non-collinear finite elements, 

which involve penalization techniques to satisfy boundary conditions. As described in the literature, connections 

between non-collinear elements are performed using uniaxial and flexural springs. The strain energies of the 

springs are determined by the nodal positions of the structure, and their contributions to the Hessian matrix and 

internal force vector of the structure are calculated using a penalization approach. To validate the implementation 

developed, solutions of the positional FEM are compared to analytical and numerical solutions obtained by the 

finite element software DIANA FEA©. Furthermore, parametric analyses are carried out to determine minimum 

stiffness values for the connection springs to allow the representation of the nonlinear equilibrium trajectory of 

planar frame structures. 
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1  Introduction 

The most used FEM formulation, in the field of structural engineering, uses the nodal displacements of the 

elements as degrees of freedom. Therefore, all quantities involved in the analysis of the structure are derived 

according to the solution of the system of equations (linear or non-linear, depending on the type of analysis 

involved) as a function of the calculated nodal displacements [1]. On the other hand, the positional formulation of 

the FEM uses the nodal positions of the elements as degrees of freedom and arises from the researchers belonging 

to the Computational Mechanics Group (GMEC) of the Department of Structural Engineering at the São Carlos 

School of Engineering [2], such as Coda and Greco [3], Greco et al. [4], Coda and Paccola [5], Coda and Paccola 

[6], Coda and Paccola [7]. Two different kinematics can be adopted to develop the positional frame elements, 

considering: rotation [8] or unconstrained vectors as degree of freedom Nogueira [2], Soares [9][10], Soares, 

Paccola and Coda [11], Bernardo [12] and Ribeiro et al. [13]. Adopting unconstrained vectors as degree of 

freedom, the connections between non-collinear elements must be performed by alternative strategies, such as the 

insertion of uniaxial and flexural springs. This strategy will be used in this work, whose objective is to estimate 

the stiffness parameters of these springs to represent a rigid connection between the elements. 
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2  Positional finite element method 

2.1 Change of configuration, strain measure and constitutive law 

The positional formulation of the FEM is based on the principle of minimum potential energy, in which both 

the strain energy ( ) of the structure and the potential ( ) of the external forces ( iF
, iq

 and ib ) are given as 

functions of the nodal positions, as in eq. (1): 

 ( ) ( ) ( ) ( ) ( ) ( )
0

0δ δ δ 0.e i i i i i i

V S

u dV F Y q S y S dS b y d



    
     



 
  = + = − − −    =
 
 
    (1) 

The change of configuration in a two-dimensional solid is given by the composition of the mapping functions 

of the initial (
0f ) and current (

1f ) configurations of the body in the parametric coordinates 1  and 2 , which 

can be seen in Figure 1. 

 

Figure 1 – Change in configuration of a two-dimensional solid 

The configuration change function f  and its respective gradient A  are given by eq. (2) and eq. (3): 
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The strain measure used in the present work is the Green-Lagrange strain E , which is defined based on the 

right Cauchy-Green C  strain tensor [15], as presented in eq. (4). The right Cauchy-Green strain tensor can be 

written in terms of the gradients of the initial and current mapping functions, as detailed in eq. (5): 

 ( )
1

,
2

= −E C I  (4) 
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The constitutive law adopted in this work is Saint-Venant-Kirchhoff, given based on the elastic constitutive 

tensor C  and the Green strain tensor E , according to eq. (6).  

 
1

: : ,
2

eu = E EC  (6) 

Associated with the Saint-Venant-Kirchhoff constitutive law and Green’s strain, there is the second Piola-

Kirchhoff stress tensor S  [15], given by eq. (7): 
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2.2 Two-dimensional frame element with unconstrained vectors 

The positional formulation of a two-dimensional frame element with the use of unconstrained vectors as 

degrees of freedom, used in this work, can be found in Coda and Paccola [6], Nogueira [2] and Coda [14]. A two-

dimensional frame element in its initial and current configurations is illustrated in Figure 2. The mapping functions 

aim to formulate the frame element based on a reference line associated with a two-dimensional element. The 

orthogonal vectors v  at each node  of the frame element, in its initial configuration, are determined from the 

relative orientation between the reference line and the faces of the two-dimensional element that represent the 

cross-section associated with the frame element. The unconstrained vectors g , however, are related to the current 

configuration of the frame element and do not have the imposition of being orthogonal to the reference line. 

 

Figure 2 - Mapping of the initial and current configurations of the element 

The mapping function of the initial configuration 
0f  of the element and its respective gradient 

0
A  [14] are 

given by eq. (8) and eq. (9): 
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where iv , 0h  and   are the orthogonal vector at the -node, the cross-sectional height and the shape function 

of the frame element, respectively. 

 

Similarly, the mapping function of the current configuration 
1f  of the element and its respectively gradient 

1
A  [14] are given by eq. (10) and eq. (11): 
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where iv  is the unconstrained vector at the -node of the frame element. 
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2.3 Connection between non-collinear elements 

The connection between two elements is shown in Figure 3. For non-collinear elements, Nogueira [2] 

proposed a spring model that allows representing both perfectly rigid connections, hinged connections or even 

semi-rigid connections, which is used in this work. The model couples the nodal positions through uniaxial springs 

and the unconstrained vectors through rotational springs. The strain energy accumulated by uniaxial springs is 

measured from the relative displacements of the nodes, while rotation springs use the angular variation between 

the unconstrained vectors. The coupling model adopted is based on the penalization method for imposing the 

coupling restrictions, which consists of adding additional terms to the system's equilibrium equations (essentially, 

contributions to the Hessian matrix and internal force vector), which penalize deviation from desired boundary 

conditions. 

 

Figure 3 - Connection between non-collinear elements 

3  Numerical results and analysis 

3.1 Symmetric von Mises’s truss 

Consider the symmetric von Mises’s truss shown in Figure 4. For this structure, two finite elements with 

linear approximation and unconstrained vectors as degrees of freedom were used. The numerical solution 

(positional FEM) was obtained using the Newton-Raphson method with displacement control. Furthermore, the 

structure was modeled and analyzed in the finite element software DIANA FEA© using the CL6TR truss element 

and considering processing with geometric nonlinearity. A parametric analysis varying the coupling stiffnesses of 

the nodal positions 1
abK  and 2

abK  was performed. The stiffnesses ranged from 00.01 /A  to 0100 /A . Figure 

5 shows the deformed shape of the truss and the nonlinear equilibrium trajectories for the different stiffness values 

adopted. There is a great influence of the stiffness of the uniaxial springs coupling the non-collinear bar elements. 

It has been observed that for low stiffness values, such as 00.01 /A , there is virtually no transmission of force 

between the elements. As the stiffness, or penalty factor, increases, the behavior of the structure converges towards 

the analytical solution. The response obtained via positional FEM coincides with both analytical and DIANA 

FEA© solutions when adopting the stiffness around 0100 /A . For stiffness of 0/A , the difference between 

the maximum positive and negative force obtained from an analytical solution is up to 36.4%. 

 

Figure 4 - Symmetric von Mises’s truss 
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Figure 5 - Vertical displacements and non-linear equilibrium trajectories of symmetrical von Mises's truss 

3.2 Asymmetric von Mises’s truss 

Consider the asymmetric von Mises’s truss shown in Figure 6. The same number and type of finite element 

was used for both the numerical solution via positional FEM and the solution using the DIANA FEA©. Both 

solutions were also based on the Newton-Raphson method with displacement control. The same parametric 

analysis regarding the stiffness of the coupling springs of the nodal positions was carried out. The deformed shape 

as well as the nonlinear equilibrium trajectories for both the horizontal u and vertical v displacements of the 

asymmetric von Mises’s truss are presented in Figure 7. As shown in the previous example, the stiffness of the 

uniaxial springs has a significant influence. The value of the stiffness parameters 1
abK  and 2

abK  that ensure the 

rigid connection between the bar elements is also around 0100 /A . However, when compared to the previous 

example, stiffness values 1
abK  and 2

abK  close to 010 /A  already provide adequate results. This behavior can be 

explained by the asymmetry of the truss, which also develops accentuated displacements in the horizontal direction 

u . This means that the connection between the elements depends on more of both stiffness parameters, meaning 

that reduced values of stiffness parameters can be used to obtain an adequate behavior. For the stiffness of 0/A

, the discrepancy between the maximum positive and negative force obtained from an analytical solution amounts 

to 18.9%. 

 

Figure 6 - Asymmetric von Mises’s truss 

 

Figure 7 - Vertical displacements and non-linear equilibrium trajectories of asymmetrical von Mises's truss 
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3.3 Simply supported frame with concentrated force 

The frame presented in Figure 8 was modeled in positional FEM using 8 elements with cubic approximation. 

A concentrated force F is applied to 3/4 of the span of the frame. The bar elements that make up the structure have 

a rectangular transversal cross-section of dimensions b and h, and are positioned according to their axis of greatest 

inertia. 

 

Figure 8 - Simply supported frame with concentrated force 

For the uniaxial springs coupling the nodal positions 1
abK  and 2

abK , the values of 100 /A L  were adopted 

for their stiffness to consider a rigid displacement connection. For the rotation spring that couples the unconstrained 

vectors 
abK , a parametric analysis was carried out to determine the value of the stiffness parameter that represents 

a rigid connection between the elements. The numerical solution via positional FEM was obtained using the 

Newton-Raphson method with force control for the solution of the system of nonlinear equilibrium equations. The 

simply supported frame was also modeled in the DIANA FEA© using eight CL9BE type elements with geometric 

nonlinearity. The deformed shape of the frame, and its nonlinear equilibrium trajectories for both the horizontal u 

and vertical v displacements, for each different values of 
abK , are illustrated in Figure 9. It is observed that the 

non-linear equilibrium trajectories obtained from positional FEM (Figure 9) present good agreement with the 

solution using the DIANA FEA© up to force around 6 N. Regarding the unconstrained vectors coupling springs, it 

is observed that, for low values of rotational stiffness, up to /I L , the structure tends to present a more reduced 

resistance and a maximum force up to 28.8% lower than the solution obtained by DIANA FEA©. A similar 

behavior would be expected if the structure was hinged. When the rotational stiffness increases to 10 /I L , the 

behavior of the structure converges to the solution obtained by DIANA FEA©. 

 

Figure 9 - Vertical displacements and non-linear equilibrium trajectories of simply supported frame 

4  Conclusions 

The adopted positional MEF formulation, using unconstrained vectors, requires a connection strategy for 

non-collinear elements. The strategy used in this work consists of connecting these vectors through rotational 
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springs, in addition to coupling the nodal positions through uniaxial springs. When introducing springs into the 

connections, the advantage is that, depending on the spring stiffness value, the connection can be represented as a 

rigid or semi-rigid connection. The definition of the spring stiffness parameter is associated with the degree of 

stiffness of the connection. Considering very exaggerated stiffness values, in order to consider a rigid connection, 

can lead to a poor conditioning of the Hessian matrix, which can make it impossible to solve the system of 

equations (a problem not observed in the examples studied). 

The analysis of the results presented in the previous section shows the behavior of the examples studied when 

faced with a parametric analysis of the stiffness parameters that couple the degrees of freedom (positions and 

unconstrained vectors) of the non-collinear elements. For the calculated structures, it was possible to determine a 

stiffness parameter that ensures adequate connection behavior, from small to large displacements. Furthermore, 

the results showed good agreement with the analytical solutions and the solutions obtained from DIANA FEA©. 

Acknowledgements. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível 

Superior - Brasil (CAPES), Finance Code 001. The authors would also like to thank the CNPq (grant number 

404388/2021-3) for the financial support given to this research. 

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the 

authorship of this work, and that all material that has been herein included as part of the present paper is either the 

property (and authorship) of the authors, or has the permission of the owners to be included here.  

References 

[1] Rao, S. S. The Finite Element Method in Engineering. Elsevier, 2005. 

[2] Nogueira, G. V. Formulação de elemento finito posicional para modelagem numérica de pórticos planos constituídos por 

compósitos laminados: uma abordagem não linear geométrica baseada na teoria Layerwise. Dissertação (Mestrado em 

Engenharia de Estruturas), Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2015. 

[3] Coda, H. B.; Greco, M. A simple FEM formulation for large deflection 2D frame analysis based on position description. 

Computer Methods in Applied Mechanics and Engineering, v. 193, n. 33–35, p. 3541–3557, ago. 2004. 

[4] Greco, M. et al. Nonlinear positional formulation for space truss analysis. Finite Elements in Analysis and Design, v. 42, 

n. 12, p. 1079–1086, ago. 2006. 

[5] Coda, H. B.; Paccola, R. R. An Alternative Positional FEM Formulation for Geometrically Non-linear Analysis of Shells: 

Curved Triangular Isoparametric Elements. Computational Mechanics, v. 40, n. 1, p. 185–200, 28 mar. 2007. 

[6] Coda, H. B.; Paccola, R. R. A FEM procedure based on positions and unconstrained vectors applied to non-linear 

dynamic of 3D frames. Finite Elements in Analysis and Design, v. 47, n. 4, p. 319–333, jan. 2011. 

[7] Coda, H. B.; Paccola, R. R. A total-Lagrangian position-based FEM applied to physical and geometrical nonlinear 

dynamics of plane frames including semi-rigid connections and progressive collapse. Finite Elements in Analysis and 

Design, v. 91, p. 1–15, nov. 2014. 

[8] Reis, M. C. J.; Coda, H. B. Physical and geometrical non-linear analysis of plane frames considering elastoplastic semi-

rigid connections by the positional FEM. Latin American Journal of Solids and Structures, v. 11, n. 7, p. 1163–1189, dez. 

2014. 

[9] Soares, H. B. Formulação e implementação numérica para análise de estabilidade de perfis de parede fina via MEF 

posicional. 2019. 99p. Dissertação (Mestrado), Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 

2019. 

[10] Soares, H. B. Desenvolvimento de ferramenta computacional para análise de colapso estrutural pelo Método dos 

Elementos Finitos Posicional. 2021. 161p. Tese (Doutorado), Escola de Engenharia de São Carlos, Universidade de São 

Paulo, São Carlos, 2021. 

[11] Soares, H. B.; Paccola, R. R.; Coda, H. B. Unconstrained Vector Positional Shell FEM formulation applied to thin-

walled members instability analysis. Thin-Walled Structures, v. 136, p. 246–257, 2019. 

[12] Bernardo, C. C. L. G. Enriquecimento da cinemática em elementos finitos de pórticos planos laminados para a 

regularização das tensões cisalhantes em análise geometricamente não linear. 2021. 109p. Dissertação (Mestrado em 

Engenharia de Estruturas) – Departamento de Engenharia de Estruturas, Escola de Engenharia de São Carlos, Universidade 

de São Paulo, São Carlos, 2021. 

[13] Ribeiro, L. R. et al. Optimal risk-based design of reinforced concrete beams against progressive collapse. Engineering 

Structures, v. 300, p. 117158, fev. 2024. 

[14] Coda, H. B. O método dos elementos finitos posicional: sólidos e estruturas - não linearidade geométrica e dinâmica. 

EESC-USP, 2018. 

[15] Reddy, J. N. An Introduction to Nonlinear Finite Element Analysis. New York: Oxford University Press, 2004. 

[16] Crisfield, M. A. Non-linear Finite Element Analysis of Solids and Structures: essentials. New York: John Wiley & Sons, 

1991. 


