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Abstract. This work evaluates the influence of a discontinuous unilateral elastic base and an initial geometrical 

imperfection on the nonlinear free vibration of cylindrical panels. The Donnell’s nonlinear shallow shell theory is 

considered to describe the cylindrical panel, then the equations are discretized by the Galerkin method. The 

unilateral elastic base is represented by the Signum function, and the Heaviside function describes the discontinuity 

of the elastic base. The results show the analysis of the nonlinear free vibrations of the cylindrical panel through 

the backbone curves, investigating the influence of the hypothesis of contact of the unilateral elastic base and the 

initial geometrical imperfection of the cylindrical panel. The modal solution employed has with five degree-of-

freedom, being sufficient to describe the nonlinear softening behavior of the imperfection cylindrical panel in 

contact with the discontinuous unilateral elastic base. The numerical results reveal that the imperfect cylindrical 

panel in contact with unilateral elastic base presents less structural stiffness than in contact with bilateral elastic 

base, with decreasing the natural frequencies. In conclusion, the backbone curves are strongly influenced by 

discontinuous unilateral elastic base and the imperfections of the cylindrical panel. 
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1  Introduction 

Thin-walled cylindrical shells and panels are structural elements that can be applied in civil, aerospace, 

mechanical engineering, among others. To analyze the behavior and stability of these structures it is necessary to 

consider the physical and geometric non-linearities in the mathematical model. The literature presents several 

works on shells and cylindrical panels under different boundary conditions, loading conditions, materials, initial 

geometric imperfections, elastic bases, referenced in reviews by: Amabili and Paidoussis [1], Alijani and Amabili 

[2], Thai and Kim [3] and Martins et al. [4]. Studies of vibrations in structures supported on elastic foundations 

have motivated several researchers. Younesian et al. [5], Malekjafarian et al.[6], Lamprea-Pineda et al. [7] and 

Zhao et al. [8] present studies of beams, plates, cables, shells and cylindrical panels supported on an elastic base. 

Yechiel Weitsman [9] evaluated unilateral elastic bases in a Euler-Bernoulli beam subjected to a concentrated 

moving load, considering only a compression reaction of elastic bases. Subsequently, several authors focused on 

investigations of nonlinear structures supported on an elastic base, researching the influence of different types of 

foundation stiffness, type of contact and the contact area of the elastic base in the domain of the structural system: 

Amabili and Dalpiaz [10], Tj et al. [11], Silveira et al.[12], Kim[13], Bahadori and Najafizadeh [14], Bhattiprolu, 

Bajaj and Davies [15], Yang et al. [16], Babaei and Eslami [17], Song et al.[18], Morais and Silva [19].  

In this work, we investigate the nonlinear free vibrations in an imperfect cylindrical panel supported on a 

discontinuous unilateral elastic base. For that, it is considered the Donnell's nonlinear theory to describe the 

imperfect cylindrical panel, then it is discretized by the Galerkin method. Perturbation technique is applied to 

obtain a consistent transversal displacement field which, in its turn, it is used to discretize the nonlinear equilibrium 
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equation of the imperfect cylindrical panel. To describe the unilateral and discontinuous elastic base, the Heaviside 

and Signum functions are used, respectively, in the mathematical model. The obtained backbones curves are 

strongly influenced by the initial geometric imperfection and, mainly, of the unilateral contact hypothesis of the 

elastic base.  

2  Problem formulation 

Consider an imperfect simply supported thin-walled circular cylindrical panel with radius R, thickness h, 

axial length ax, circumferential length aθ, and open-angle Θ (=aθ/R), as shown in Fig 1a. The displacement fields 

in the axial, u, circumferential, v, and transversal, w, directions are also represented in Fig. 1a in addition with their 

cylindrical coordinates x, θ, and z, respectively. The material of the cylindrical panel is assumed as linear elastic, 

isotropic and homogenous with Young’s modulus E, Poisson’s coefficient , and density ρ.  

 

  

(a) (b) (c) 

Figure 1. (a) Geometry and displacement field for a cylindrical panel. (b) Elastic foundation in the longitudinal 

direction in the region defined by 0< 1,2<L. (c) Elastic foundation in the circumferential direction in the region 

defined by 0< 3,4<. 

The nonlinear equation of motion and the compatibility equation of the cylindrical panel are found from the 

Donnell’s nonlinear shallow shell theory and are described by of the transversal displacement field w and the 

Airy’s stress function f [19]: 

𝜌ℎ𝑤̈ + 𝐷𝛻4𝑤 − 𝑓,𝜃𝜃(𝑤,𝑥𝑥 + 𝑤0,𝑥𝑥) + 𝑅 𝑓,𝑥𝑥 − 𝑓,𝑥𝑥(𝑤,𝜃𝜃 +  𝑤0,𝜃𝜃) 

−2𝑓,𝑥𝜃(𝑤,𝑥𝜃 + 𝑤0,𝑥𝜃)  +  𝑝𝑘 = 0 

(1) 
∇4𝑓 =

𝐸ℎ

𝑅4
(𝑤,𝑥𝜃

2 − 𝑤,𝑥𝑥𝑤,𝜃𝜃 + 𝑅𝑤,𝑥𝑥 + 2𝑤,𝑥𝜃𝑤0,𝑥𝜃 − 𝑤,𝑥𝑥𝑤0,𝜃𝜃 − 𝑤,𝜃𝜃𝑤0,𝑥𝑥) 

∇4(∙) = (∙),𝑥𝑥𝑥𝑥 +
2

𝑅2
(∙),𝑥𝑥𝜃𝜃 +

1

𝑅4
(∙),𝜃𝜃𝜃𝜃 

where 0 is the natural frequency of cylindrical panel, D[=Eh3/12(1-2)] is the flexural stiffness, w0 is an initial 

geometrical imperfection, pk are the reaction of the discontinuous unilateral elastic base described, respectively, 

by: 

𝑤0 = 𝑊0
𝑖𝑚𝑝

ℎ 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎𝑥

) 𝑠𝑖𝑛 (
𝑛𝜋𝜃

𝛩
) 

(2) 

𝑝𝑘 = 𝐾𝑤𝑤𝐻𝑥𝐻𝜃

(1 − 𝑠𝑔𝑛(𝑤 + 𝑤𝑜))

2
 

 

where Kw is the Winkler stiffness parameter and 𝑊0
𝑖𝑚𝑝

 is magnitude of the initial geometric imperfection.  

Hx and H in eq. (2) are the Heaviside functions which describes the discontinuous elastic base in the 

longitudinal direction Hx[=H(x-1)-H(x-2)] (0< 1,2<L in Fig. 1b), and in the circumferential direction H[=H(-

3)-H(-4)] (0< 3,4< in Fig. 1c). The term sgn is the Signum function that active the unilateral elastic base. 
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When (w+ w0) takes positive values, the reaction pk becomes zero. In the opposite way otherwise, when (w+ w0) 

takes negative values, the reaction pk acts on the cylindrical panel. To represent a bilateral contact of a 

discontinuous elastic base the term (1-sgn (w+ w0))/2, in eq. (2), is considered equal to one.  

To discretize the nonlinear equilibrium equation of the imperfect cylindrical panel, the Airy’s stress function 

f in eq. (1) is obtained analytically for a particular transversal displacement field w. According to Morais and Silva 

[20], a consistent transversal displacement field for a simply supported cylindrical panel is derived from a 

perturbation method, obtaining the following general transversal modal solution: 

𝑤 = ∑ ∑ 𝐶,𝑖𝑗
(𝑡)sin (

𝑖𝑚𝜋𝑥

𝑎𝑥

)

𝑗=1,3,5

 𝑠𝑖𝑛 (
𝑗𝑛𝜋𝜃

𝛩
)

𝑖=1,3,5

 

+ ∑ ∑ 𝐶̂,(2+6𝛼)(2+6𝛽)

𝛽=0,1,2,3...

(𝑡) {[
3 + 6𝛼

4 + 12𝛼
cos (

6𝛼𝑚𝜋𝑥

𝑎𝑥

)

𝛼=0,1,2,3...

 −cos (
(2 + 6𝛼)𝑚𝜋𝑥

𝑎𝑥

)

+
1 + 6𝛼

4 + 12𝛼
cos (

(4 + 6𝛼)𝑚𝜋𝑥

𝑎𝑥

)] [
3 + 6𝛽

4 + 12𝛽
cos (

6𝛽𝑛𝜋𝜃

𝛩
)

− cos (
(2 + 6𝛽)𝑛𝜋𝜃

𝛩
) +

1 + 6𝛽

4 + 12𝛽
cos (

(4 + 6𝛽)𝑛𝜋𝜃

𝛩
)]} 

(3) 

 

Returning to the nonlinear cylindrical equilibrium equation, with the obtained f and the particular w, the 

Galerkin method is applied, obtaining a set of nonlinear second order differential equations in terms of modal 

amplitudes 𝐶,𝑖𝑗(𝑡) and 𝐶̂,(2+6𝛼)(2+6𝛽)(t). 

3  Numerical Results 

The cylindrical panel has the following geometrical and physical parameters: R=8.333 m, h=0.01 m, ax =1 m, 

aθ=1 m, E =210 GPa, ν = 0.3 and ρ=7850 kg/m³. This perfect cylindrical panel without elastic base presents the 

lowest natural frequency with 0=437.92 rad/s, for the wave numbers (m, n) = (1, 1). The presence of the elastic 

base increases the system stiffness and consequently the natural frequencies. Consider for this study, the cylindrical 

panel supported on an elastic base with Winkler base of Kw = 92.30 MN/m³. The contact area has 7.5% in relation 

to the area of the cylindrical panel and is centered in one of its quadrant (ε1=0.1130, ε2=0.3870, ε3=0.01356 and 

ε4=0.0464). Also, it is considered the presence of an initial geometrical imperfection in the shape of the 

fundamental vibration mode eq. (2), with magnitude 𝑊0
𝑖𝑚𝑝

 equal to: ±0.025, ±0.05 and ±0.10. To discretize the 

nonlinear equilibrium equation a 5-DOF model (C,11(t), C,12(t), C,21(t), C,22(t) and Ĉ,22(t)) is considered for the 

transverse displacement field in eq. (3). This 5-DOF model can capture the lowest natural frequency of cylindrical 

panels with discontinuous elastic base and describe the nonlinear dynamic behavior until vibration’s amplitude 

equal to shell’s thickness. 

 

  
(a) bilateral contact (b) unilateral contact 

Figure 2. Backbone curves for the imperfect cylindrical panels in contact with (a) bilateral and (b) unilateral with 

different magnitude for the geometric imperfection. 
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Figure 2 shows the backbones curves for the imperfect cylindrical panels, obtained by the MatCont (Govaerts 

[21]), a Matlab software continuation package. It is observed in Fig. 2a the backbone curves for the panels in 

contact with the bilateral elastic base and in Fig. 2b in contact with the unilateral elastic base. The ratio between 

the nonlinear and the linear frequency, /0, are lower for the panel in contact with unilateral than the panel in 

contact bilateral elastic base, because the natural frequencies for cylindrical panel with unilateral elastic base is 

lower than the natural frequencies of the cylindrical panel with bilateral elastic base. The influence of the initial 

geometric imperfection shifts the backbone curve to the left or right of the backbone of the perfect panel (black 

curve). If the initial geometric imperfection is positive, the backbone curves are moved to the left of the perfect 

panel backbone curve, and on the other hand, if the initial geometric imperfection is negative, the backbone curves 

are moved to the right if the initial geometric imperfection is positive. The cylindrical panel with a bilateral elastic 

base presents a well-behaved softening nonlinearity as depicted in Fig. 2a. The exception to this statement occurs 

for the imperfect cylindrical panel with 𝑊0
𝑖𝑚𝑝

=-0.10 where the backbone curve displays an almost linear behavior. 

On the other hand, the imperfect cylindrical panel with a unilateral elastic base shows a different behavior of its 

backbone curve, as displayed in Fig. 2b. Due to the presence of an initial geometric imperfection and the unilateral 

contact hypothesis, the nonlinear free vibration of the cylindrical is influenced by the partial contact of the elastic 

base. 

 

   

(a) |C1,1max|/h=0.038 (b) |C1,1max|/h=0.13 (c) |C1,1max|/h=0.375 

   

(d) |C1,1max|/h=0.0448 (e) |C1,1max|/h=0.11 (f) |C1,1max|/h=0.386 

Figure 3. Time responses for imperfect cylindrical panel with unilateral elastic base and initial geometric 

imperfection with magnitude ±0.10 considering selected values of |C1,1max|/h in backbone curves of Fig. 2b. 

Time responses for the cylindrical panel in contact with the unilateral base and initial geometric imperfection 

with magnitude ±0.10 are shown in Fig. 3 for the center point (x, )=(ax/2, /2) of the cylindrical panel with certain 

vibration values chosen on the backbone curves of Fig. 2b. These time responses are obtained using the fourth-

order Ruge-Kutta method with the initial conditions obtained in the backbone curves. The initial position of the 

imperfect cylindrical panel is represented by the horizontal dashed line. Cylindrical panels with a unilateral elastic 

base and positive imperfection have a gap between the elastic base and the imperfect panel and the vibration 

amplitude is not sufficient to cause this contact, Fig. 3a. As the vibration amplitudes increase, Fig. 3b, a small 

contact begins to be established and the backbone curve is shifted to the right in Fig. 2b. When the vibration 
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amplitude increases again, Fig. 3c, the contact between the cylindrical panel and the elastic base increases the 

softening behavior of the backbone curve is well-defined. In imperfect panels with negative initial geometric 

imperfection and small vibration amplitude, the contact with the elastic base exists throughout the entire time, as 

shown in Fig. 3d, increasing the natural frequencies and moving the backbone curve of Fig. 2b to the right. 

Increasing the vibration amplitudes in Figs. 3e and 3f, the contact between the cylindrical panel and the elastic 

base is partial and the backbone curve is shifted to the left due to decrease of the natural frequency.  

4  Conclusions 

This work evaluated the influence of unilateral elastic base and an initial geometric imperfection on the 

nonlinear free vibration of cylindrical panel. The study presented the backbone curves and time response to analyze 

the nonlinear behavior of the cylindrical panel. The numerical results were obtained considering a modal solution 

with five degrees of freedom that was derived from a perturbation technique being able to capture the lowest 

natural frequency and the nonlinear modal coupling. It was observed that the initial geometric imperfection 

changes the natural frequencies of the cylindrical panel depending on its signal, leading to a shifting of the 

backbone curves. The unilateral elastic base changes the global stiffness of the cylindrical, strongly modifying the 

behavior of the backbone curves when the vibration amplitudes were increased.  

Acknowledgements. This work was possible thanks to the support of the Ministry of Education - CAPES, and 

CNPq. 

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the 

authorship of this work, and that all material that has been herein included as part of the present paper is either the 

property (and authorship) of the authors, or has the permission of the owners to be included here.  

References 

[1] M. Amabili, M.P. Païdoussis, Review of studies on geometrically nonlinear vibrations and dynamics of circular 

cylindrical shells and panels, with and without fluid-structure interaction, Appl Mech Rev 56 (2003) 349–356. 

https://doi.org/10.1115/1.1565084. 

[2] F. Alijani, M. Amabili, Non-linear vibrations of shells: A literature review from 2003 to 2013, Int J Non Linear 

Mech 58 (2014) 233–257. https://doi.org/10.1016/j.ijnonlinmec.2013.09.012. 

[3] H.-T. Thai, S.-E. Kim, A review of theories for the modeling and analysis of functionally graded plates and shells, 

Compos Struct 128 (2015) 70–86. https://doi.org/10.1016/j.compstruct.2015.03.010. 

[4] J.P. Martins, F. Ljubinkovic, L. Simões da Silva, H. Gervásio, Behaviour of thin-walled curved steel plates under 

generalised in-plane stresses: A review, J Constr Steel Res 140 (2018) 191–207. https://doi.org/10.1016/j.jcsr.2017.10.018. 

[5] D. Younesian, A. Hosseinkhani, H. Askari, E. Esmailzadeh, Elastic and viscoelastic foundations: a review on linear 

and nonlinear vibration modeling and applications, Nonlinear Dyn 97 (2019) 853–895. https://doi.org/10.1007/s11071-019-

04977-9. 

[6] A. Malekjafarian, S. Jalilvand, P. Doherty, D. Igoe, Foundation damping for monopile supported offshore wind 

turbines: A review, Marine Structures 77 (2021) 102937. https://doi.org/10.1016/j.marstruc.2021.102937. 

[7] A.C. Lamprea-Pineda, D.P. Connolly, M.F.M. Hussein, Beams on elastic foundations – A review of railway 

applications and solutions, Transportation Geotechnics 33 (2022) 100696. https://doi.org/10.1016/j.trgeo.2021.100696. 

[8] X. Zhao, W.D. Zhu, Y.H. Li, M. Li, X.Y. Li, Review, classification, and extension of classical soil-structure 

interaction models based on different superstructures and soils, Thin-Walled Structures 173 (2022) 108936. 

https://doi.org/10.1016/j.tws.2022.108936. 

[9] Y. Weitsman, Onset of separation between a beam and a tensionless elastic foundation under a moving load, Int J 

Mech Sci 13 (1971) 707–711. https://doi.org/10.1016/0020-7403(71)90070-1. 

[10] M. Amabili, G. Dalpiaz, Free Vibrations of Cylindrical Shells with Non-Axisymmetric Mass Distribution on 

Elastic Bed, Meccanica 32 (1997) 71–84. https://doi.org/10.1023/A:1004219803239. 

[11] H.G. Tj, T. Mikami, S. Kanie, M. Sato, Free vibration characteristics of cylindrical shells partially buried in elastic 

foundations, J Sound Vib 290 (2006) 785–793. https://doi.org/10.1016/j.jsv.2005.04.014. 

[12] R.A.M. Silveira, W.L.A. Pereira, P.B. Gonçalves, Nonlinear analysis of structural elements under unilateral contact 

constraints by a Ritz type approach, Int J Solids Struct 45 (2008) 2629–2650. https://doi.org/10.1016/j.ijsolstr.2007.12.012. 

[13] Y.-W. Kim, Effect of partial elastic foundation on free vibration of fluid-filled functionally graded cylindrical 

shells, Acta Mechanica Sinica 31 (2015) 920–930. https://doi.org/10.1007/s10409-015-0442-5. 

https://doi.org/10.1115/1.1565084
https://doi.org/10.1016/j.ijnonlinmec.2013.09.012
https://doi.org/10.1016/j.compstruct.2015.03.010
https://doi.org/10.1016/j.jcsr.2017.10.018
https://doi.org/10.1007/s11071-019-04977-9
https://doi.org/10.1007/s11071-019-04977-9
https://doi.org/10.1016/j.marstruc.2021.102937
https://doi.org/10.1016/j.trgeo.2021.100696
https://doi.org/10.1016/j.tws.2022.108936
https://doi.org/10.1016/0020-7403(71)90070-1
https://doi.org/10.1023/A:1004219803239
https://doi.org/10.1016/j.jsv.2005.04.014
https://doi.org/10.1016/j.ijsolstr.2007.12.012
https://doi.org/10.1007/s10409-015-0442-5


Influence of the unilateral elastic base on the backbone curves of an imperfect cylindrical panel 

CILAMCE-2024 

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Maceió, Brazil, November 11-14, 2024 

 

[14] R. Bahadori, M.M. Najafizadeh, Free vibration analysis of two-dimensional functionally graded axisymmetric 

cylindrical shell on Winkler–Pasternak elastic foundation by First-order Shear Deformation Theory and using Navier-

differential quadrature solution methods, Appl Math Model 39 (2015) 4877–4894. 

https://doi.org/10.1016/j.apm.2015.04.012. 

[15] U. Bhattiprolu, A.K. Bajaj, P. Davies, Periodic response predictions of beams on nonlinear and viscoelastic 

unilateral foundations using incremental harmonic balance method, Int J Solids Struct 99 (2016) 28–39. 

https://doi.org/10.1016/j.ijsolstr.2016.08.009. 

[16] J. Yang, J. Dong, S. Kitipornchai, Unilateral and bilateral buckling of functionally graded corrugated thin plates 

reinforced with graphene nanoplatelets, Compos Struct 209 (2019) 789–801. 

https://doi.org/10.1016/j.compstruct.2018.11.025. 

[17] H. Babaei, M.R. Eslami, On nonlinear vibration and snap-through buckling of long FG porous cylindrical panels 

using nonlocal strain gradient theory, Compos Struct 256 (2021) 113125. https://doi.org/10.1016/j.compstruct.2020.113125. 

[18] K. Gao, W. Gao, D. Wu, C. Song, Nonlinear dynamic stability of the orthotropic functionally graded cylindrical 

shell surrounded by Winkler-Pasternak elastic foundation subjected to a linearly increasing load, (2017). 

https://doi.org/10.1016/j.jsv.2017.11.038. 

[19] Morais, J. L., Silva, F. M. A., 2022. Nonlinear resonance curves of a cylindrical panel with unilateral contact of a 

discontinuous elastic base. Proceedings of the XLIII Ibero-LatinAmerican Congress on Computational Methods in 

Engineering, v. 1. p. 1-7.(2022). 

[20] Morais, J. L., Silva, F. M. A., Influence of modal coupling and geometrical imperfections on the nonlinear buckling 

of cylindrical panels under static axial load. Engineering Structures, v. 183, p. 816-829.(2019). 

https://doi.org/10.1016/j.engstruct.2018.12.032.  

[21] W. Govaerts, Y.A. Kuznetsov, H.G.E. Meijer, B. Al-Hdaibat, V. De Witte, A. Dhooge, W. Mestrom, N. Neirynck, 

A.M. Riet, B. Sautois, MATCONT: Continuation toolbox for ODEs in Matlab, Retrieved December 4 (2019) 2020. 

https://doi.org/10.1016/j.apm.2015.04.012
https://doi.org/10.1016/j.ijsolstr.2016.08.009
https://doi.org/10.1016/j.compstruct.2018.11.025
https://doi.org/10.1016/j.compstruct.2020.113125
https://doi.org/10.1016/j.jsv.2017.11.038
https://doi.org/10.1016/j.engstruct.2018.12.032

