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Abstract. Buckling is a major concern in the design of thin-walled laminated structures since they tend to fail 

under stresses much lower than the material's strength. Thin-walled lipped channel columns present three critical 

buckling modes: local, distortional, and global. It is well known that the buckling loads of laminated open-section 

columns with arbitrary layup can be accurately computed using the Finite Element Method. However, the 

application of this approach to trace the signature curve of composite columns with channel sections is 

cumbersome and presents a high computational cost. Therefore, this work presents a simple, efficient, and accurate 

methodology based on the Rayleigh-Ritz Method to evaluate the local and distortional buckling load of laminated 

fiber reinforced composite lipped channel columns. The accuracy of the proposed approach is assessed by 

comparing the results obtained using the Finite Strip Method, Generalized Beam Theory, and Finite Element 

Method, and excellent results are achieved. 

Keywords: Composite columns; Lipped channel sections; Local buckling; Distortional buckling. 

1  Introduction 

A laminated fiber-reinforced composite is a type of composite material made by stacking multiple layers 

(layup) of fiber-reinforced material. Each layer consists of fibers (such as glass, carbon, or aramid) embedded in 

a matrix (e.g. be polymeric, metallic, or ceramic). The fibers in each layer can be oriented in different directions 

to optimize a mechanical property of the material, like strength or stiffness [1].  

Buckling is a major concern in the design of thin-walled laminated structures since they tend to fail under 

stresses much lower than the material's strength. It is well known that thin-walled columns with a lipped channel 

section present three critical buckling modes: local, distortional, and global [2].  

The global buckling mode involves the deformation of the member axis and is associated with cross-section 

in-plane rigid-body motions [2]. Barros et al. [3] presented a simple, but effective methodology based on the 

Rayleigh-Ritz Method to determine the global buckling loads for laminated fiber reinforced composite channel 

columns using a theory to obtain the orthotropic equivalent properties of the cross-section. Pinto et al. [4] showed 

a comparison between the global buckling loads calculated for laminated channel columns using the cross-

sectional equivalent properties derived from three different methodologies.   
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The local buckling mode involves deformations due to the bending of the cross-sectional component plates, 

while the axis of the bar remains undeformed, and there are no fold line displacements of the cross-section [2]. 

Debski et al. [5] present experimental results for the local buckling of laminated channel columns with different 

layups and compare the results with those obtained using shell finite elements. D’Aguiar and Parente [6] proposed 

an approximate methodology for evaluating the local buckling load of laminated columns with channel sections 

and studied the post-critical behavior of imperfect columns using shell finite elements. Aguiar et al. [7] presented 

comparisons between analytical, numerical, and experimental solutions for the local buckling load of thin-walled 

composite columns for various layups. 

To prevent local buckling, edge stiffeners can be added to the cross-section walls. However, while this 

approach leads to greater strength against local buckling, but it can also result in the appearance of distortional 

buckling. [8], which is a mode characterized by rotation of the flange at the flange/web junction in members with 

edge-stiffened elements [9]. Lau and Hancock [10] present formulas that allow the determination of the elastic 

distortional buckling loads for channel section columns made of steel. Cardoso et al. [11] developed two models 

and adopted the Rayleigh Quotient Method to derive closed-form equations for the distortional buckling stress for 

steel lipped channel sections subject to uniform compression. 

It is well known that Finite Element Method (FEM) can be used to calculate the critical buckling loads of 

thin-walled composite columns with open cross-section and arbitrary layup. However, the application of FEM to 

trace the signature curve is cumbersome and presents a high computational cost. Therefore, this work presents a 

simple, efficient, and accurate methodology based on the Rayleigh-Ritz Method to evaluate the local and 

distortional buckling loads of laminated fiber reinforced composite lipped channel columns. 

2  Methodology 

This item is dedicated to outlining the main features of the theoretical basis adopted in this work to determine 

the local and distortional buckling loads of laminated lipped channel columns subject to uniform compression. 

Section 2.1 provides a brief review of the Classical Laminated Theory (CLT) adopted in this paper, and the details 

of the local, and distortional buckling formulations are presented in sections 2.2, and 2.3, respectively. 

2.1 Classical Laminated Theory 

Considering that each component plate of the lipped channel deforms as a long-laminated plate, the strain 

field for each plate can be written as: 

𝛆 = {

𝜀𝑥
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⟹ 𝛆 = 𝛆𝑚 + 𝑧𝛋 (1) 

where εm is the membrane strain field related to u and v, and 𝜅 are the curvatures of the midplane related to w (see 

Figure 1b). 

The Classical Lamination Theory (CLT) is adopted to model the laminate mechanical behavior. Thus, by 

integrating the stresses through the thickness of a laminated strip, and assuming an orthotropic behavior for each 

ply, the generalized stress-strain relation for a single laminated strip can be written as [1]: 

{
𝐍
𝐌
} = [

𝐀 𝐁
𝐁 𝐃

] {
𝜺𝑚
𝜿
}  →  {

𝜺𝑚
𝜿
} = [

𝛂 𝛃
𝛃 𝛅

] {
𝐍
𝐌
} (2) 

in which Aij, Bij, and Dij (i, j = 1, 2, 6) are the extensional, coupling, and bending stiffness matrices, respectively, 

Nx, Ny, and Nxy are the in-plane and shear stress resultants per unit length, and Mx, My, and Mxy are bending and 

twisting moments per unit length. 

The proposed methodology is based on a flexibility approach [12] which has three steps: (i) the matrix ABD 

(Eq. (2)) is inverted to obtain the flexibility matrix (α𝛽δ); (ii) the terms βij, δ16, and δ26 are zeroed; and (iii) the 

resultant α𝛽δ is inverted so that a new uncoupled ABD matrix is obtained.  
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Figure 1. Coordinate systems adopted: (a) global (X-Y-Z), and (b) local (x-y-z). Adapted from [13, 14]. 

2.2 Local buckling model 

The total potential energy of the lipped channel column presented in Figure 1a is given by: 

𝛱 = 𝑈 + �̅� (3) 

where 𝑈 is the strain energy of the column, and �̅� is the potential of the applied loads. The strain energy 𝑈𝑝 and 

the potential of the applied loads �̅�𝑝 of one plate component of the cross-section can be obtained by: 

𝑈𝑝 = ∫
1

2
𝛆𝑇 𝛔 𝑑𝛺 =

1

2
∫𝛋𝑝

𝑇 𝐃𝑝 𝛋𝑝 𝑑𝑥
 

𝐿

 (4) 

�̅�𝑝 = −∫
1

2
σ𝑥ε𝑥 𝑑𝛺 = −

1

2
∫σ𝑥 [(

𝜕𝑉

𝜕𝑥
)
2

+ (
𝜕𝑊

𝜕𝑥
)
2

]  𝑑𝛺 = −
𝑁𝑥
2
∫ ∫ (

𝜕𝑤𝑝,𝐿

𝜕𝑥
)

2

𝑑𝑦
𝑏𝑝

0

𝑑𝑥
𝐿

0

 (5) 

d𝛺 is the volume from a differential element, Nx is the load per unit length applied in the perimeter of the cross-

section, bp is the width of the analyzed plate, and wp,L is a function that represents the deflection of a plate p and 

has the form presented as follows: 

𝑤𝑝,𝐿 = 𝑓𝑝,𝐿(𝑦) 𝑠𝑖𝑛 (
𝑚 𝜋 𝑥

𝐿
) (6) 

The functions fw,L(y), ff,L(y), and fs,L(y) must represent the displacements of the web, flanges, and stiffeners, 

respectively, and they need to correspond to the local buckling mode presented in Figure 2a. The functions used 

in this work can be obtained in [13, 14] and they are given by: 

𝑓𝑤,𝐿(𝑦) = 𝐴1
𝑦

𝑏𝑤
(𝑏𝑤 − 𝑦) + 𝐴2 𝑦 (𝑏𝑤 − 𝑦)

(2𝑦 − 𝑏𝑤)
2

4
 (7) 

𝑓𝑓,𝐿(𝑦) = 𝛼𝐿 𝑦 (𝑏𝑓 − 2𝑦 +
𝑦2

𝑏𝑓
) + 𝐴3 𝑦 (

𝑦2

𝑏𝑓
− 𝑦) (8) 

𝑓𝑠,𝐿(𝑦) = 𝐴4 𝑦 (𝑏𝑠 − 2𝑦 +
𝑦2

𝑏𝑠
) + 𝐴5 (3𝑦

2 −
2𝑦3

𝑏𝑠
) + 𝐴6 𝑦 (

𝑦2

𝑏𝑠
− 𝑦) (9) 

The coefficients Ai (i = 1, 2, … 6) can be correlated to αL by applying a set of boundary conditions to the 

local buckling mode. They are (a) zero displacements at the wall junctions, (b) compatibility of rotations and 

bending moments My at the wall junctions, and (c) null bending moment, My, and shear force, Vy, at the free end 

of the stiffener. 

Due to the symmetry of the buckling mode (see Figure 2a), the total strain energy 𝑈 and the potential of the 

applied loads �̅� can be obtained by: 

𝑈 = 𝑈𝑤 + 2 𝑈𝑓 + 2 𝑈𝑠  �̅� = �̅�𝑤 + 2 �̅�𝑓 + 2 �̅�𝑠 (10) 

in which the subscripts w, f, and s refer, respectively, to the web, flange, and stiffener. 

The critical load per unit length Nx,cr is defined as the load at which an equilibrium configuration is possible 

in a slightly deformed state. Thus, the critical load is the load at which the total potential energy 𝛱 defined in Eq. 

(3) is stationary. This occurs when its derivative with respect to αL is zero, resulting in a linear equation. This 

equation has a trivial solution, where αL = 0, and a non-trivial solution, which is the response that leads to the 

buckling of the column. The critical local load Pcr,L can be calculated by:  
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Figure 2. Buckling modes analyzed for lipped channel columns: (a) global, and (b) local. Adapted from [13, 14]. 

𝑃𝑐𝑟,𝐿 = 𝑁𝑐𝑟,𝐿[𝑏𝑤 + 2(𝑏𝑓 + 𝑏𝑠)] (11) 

The resulting equation from this formulation was obtained with the assistance of a symbolic mathematics 

program and is too long; for this reason, it will be omitted in this paper. 

2.3 Distortional buckling model 

The distortional buckling formulation presented in this paper is based on the Model 2 proposed by Cardoso 

et al. [11]. In this model, web and flange plate strains are taken into account, although stiffener transverse bending 

is neglected. According to [11], the buckling mode can be described as a combination of sub-shapes: stiffened 

flange rotation, ϕ, bending about minor axis, δ, and web and flange local plate bending, ww,D and wf,D, as presented 

in Figure 2b, where: 

𝜙 = 𝜙0 𝑠𝑖𝑛 (
𝑚 𝜋 𝑥

𝐿
)    𝛿 = 𝛽 𝜙    𝑤𝑤,𝐷 = 𝑓𝑤,𝐷 𝜙    𝑤𝑓,𝐷 = 𝑓𝑓,𝐷 𝜙 (12) 

where 𝛽 = – Izω/Iz. The parameters Izω and Iz will be defined in the next paragraphs, and fw,D and ff,D are given by: 

𝑓𝑤,𝐷 = 𝑘1 𝑏𝑤[(𝑦/𝑏𝑤) − (𝑦/𝑏𝑤)
2] (13) 

𝑓𝑓,𝐷 = 𝑘1 𝑦 [1 + (𝑏𝑓/𝑏𝑤)(𝑦/𝑏𝑓) − 1/3 (𝑏𝑓/𝑏𝑤)(𝑦/𝑏𝑓)
2
] (14) 

k1 = 𝜃1,D /ϕ, and it can be calculated by using the compatibility of rotations in the web-flange junction. 

Due to the symmetry of the buckling mode (see Figure 2b), all the calculations presented in this section are 

performed for half of a lipped channel cross-section. The total strain energy 𝑈 and the potential of the applied 

loads �̅� of a half section can be obtained by: 

𝑈 = 𝑈𝑤 + 𝑈𝑓 + �̅�𝑠 + 𝑈𝑚    �̅� = �̅�𝑤 + �̅�𝑓 + �̅�𝑠 (15) 

The terms of the strain energy 𝑈 are: 

�̅�𝑤 =
1

2
∫ 𝛋𝑤

𝑇  𝐃𝑤  𝛋𝑤 𝑑𝑥
𝑏𝑤/2

0

 �̅�𝑓 =
1

2
∫ 𝛋𝑓

𝑇 𝐃𝑓 𝛋𝑓 𝑑𝑥
𝑏𝑓

0

�̅�𝑠 =
�̅�𝐽𝑠
2
∫ (

𝜕2𝜃2,𝐷
𝜕𝑥2

)

2

𝑑𝑥
𝑏𝑠

0

 �̅�𝑚 =
�̅�𝑚
2
(𝐼𝜔 + 2𝛽𝐼𝑌𝜔 + 𝐼𝑌)∫ (

𝜕2𝜙

𝜕𝑥2
)

2

𝑑𝑥
𝐿

0

 (16) 

�̅�𝑚 = 1/(ℎ 𝛼11) and �̅� = 12/(ℎ3 𝛿66) are the equivalent mechanical properties to the laminate, α11 and δ66 are 

defined in Eq. (2), Js is the polar moment of inertia of the lip, IY is the moment of inertia about the minor axis, Iω 

is the moment of inertia related to restrained warping, IYω is the sectorial product, and ω is the sectorial area of the 

half-lipped channel. The parameters Js, IY, IYω, and Iω are defined as follows: 

𝐽𝑠 = ∫(𝑌
2 + 𝑍2) 𝑑𝐴

 

𝐴

=
𝑏𝑠  ℎ

3

3
 𝐼𝑌 = ∫𝑍

2 𝑑𝐴
 

𝐴

=
𝑏𝑓
2 ℎ

6
 
(𝑏𝑓

2 + 4𝑏𝑓𝑏𝑠 + 2𝑏𝑓𝑏𝑤 + 6𝑏𝑠𝑏𝑤)

𝑏𝑤 + 2𝑏𝑓 + 2𝑏𝑠

𝐼𝑌𝜔 = −∫𝑍 𝜔 𝑑𝐴
 

𝐴

= −
1

6
 
𝑏𝑓
3 𝑏𝑠

2 ℎ

𝑏𝑓 + 2𝑏𝑠
 𝐼𝜔 = ∫𝜔2 𝑑𝐴

 

𝐴

=
𝑏𝑓
2 𝑏𝑠

3 ℎ

3
(
𝑏𝑓 + 𝑏𝑠

𝑏𝑓 + 2𝑏𝑠
)

2  (17) 
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where h is the total thickness of the laminate, and IYω and Iω are computed with respect to the rotation center of the 

stiffened flange (point S in Figure 2b). 

The terms of the potential of the applied loads �̅� are [11]: 

�̅�𝑤 = −
1

2
∫σ𝑥 [(

𝜕𝑉𝑤
𝜕𝑥

)
2

+ (
𝜕𝑊𝑤
𝜕𝑥

)
2

]  𝑑𝛺 = −
σ𝑥
2
∫ ∫ [

𝜕

𝜕𝑥
(𝑤𝑤,𝐷 + 𝛿 + 𝜙 ∆𝑦𝑠)]

2

𝑑𝑦
𝑏𝑤/2

0

𝑑𝑥
𝐿

0

 (18) 

�̅�𝑓 = −
σ𝑥
2
∫ ∫ {[

𝜕

𝜕𝑥
(−𝑤𝑓,𝐷)]

2

+ [
𝜕

𝜕𝑥
(𝛿 + 𝜙 ∆𝑦𝑠)]

2

} 𝑑𝑦
𝑏𝑓

0

𝑑𝑥
𝐿

0

 (19) 

�̅�𝑠 = −
σ𝑥
2
∫ ∫ {[

𝜕

𝜕𝑥
(−𝜙 𝑏𝑓)]

2

+ [
𝜕

𝜕𝑥
(𝜃2,𝐷 𝑦 + 𝛿 + 𝜙 ∆𝑦𝑠)]

2

} 𝑑𝑦
𝑏𝑠

0

 𝑑𝑥
𝐿

0

 (20) 

in which 𝜃2,D = k2 ϕ, and it can be calculated by using the compatibility of rotations in the flange-stiffener junction, 

and 𝛥ys (see Figure 2b) is given by: 

∆𝑦𝑠 =
𝑏𝑠
2

𝑏𝑓 + 2𝑏𝑠
 (21) 

The critical distortional stress σcr,D is the stress at which the total potential energy 𝛱 defined in Eq. (3) is 

stationary. This occurs when its derivative with respect to ϕ0 is zero, resulting in a linear equation. This equation 

has a trivial solution, where ϕ0 = 0, and a non-trivial solution, which is the response that leads to the buckling of 

the column. The critical distortional load Pcr,D can be calculated by: 

𝑃𝑐𝑟,𝐷 = σ𝑐𝑟,𝐷 [𝑏𝑤 + 2(𝑏𝑓 + 𝑏𝑠)] ℎ (22) 

As occurred in section 2.2, the resulting equation from this formulation is too long and will be omitted. 

3  Results and Discussion 

For the assessment of the proposed approaches, a numerical application for simply supported lipped channel 

columns made of isotropic and laminated composite materials with three different layups was carried out, and the 

results are compared with the Finite Strip Method (FSM) [15] by using the flexibility approach of pyFSM [12], 

Generalized Beam Theory (GBT) [16] by using GBTul [17, 18], and Finite Element Method (FEM) [19, 20]. 

The geometric properties of the lipped channel are web height bw = 70 mm, flange width bf = 40 mm, and 

stiffener width bs = 5 mm (see Figure 1a), and total thickness h = 1.048 mm; and the material properties used are 

E = 200 GPa, and ν = 0.30 for the isotropic columns, and E1 = 130.71 GPa, E2 = 6.36 GPa, G12 = 4.18 GPa, and 

ν12 = 0.32 for the laminated composite columns [5]. The considered layups are: L1 [0°]8, L2 [(0°/90°)2]S, and L3 

[(45°/-45°)2]S. 

A discretization with 10 mm width elements was used in FSM and GBT programs, while meshes with 10 

mm × 10 mm of quadratic shell elements with 8 nodes and reduced integration was adopted in the finite element 

analyses. On the other hand, it is important to note that GBT program was developed for the analysis of columns 

made of isotropic and orthotropic materials. Therefore, it is necessary to obtain the mechanical properties of an 

equivalent orthotropic material. For this, the approach proposed by Barbero [1] was used, where the equivalent 

properties for local buckling are given by: 

𝐸1,𝑒𝑞
𝑔𝑙𝑜𝑏𝑎𝑙

=
1

ℎ 𝛼11
 𝐸2,𝑒𝑞

𝑔𝑙𝑜𝑏𝑎𝑙
=

1

ℎ 𝛼22
 𝐺12,𝑒𝑞

𝑔𝑙𝑜𝑏𝑎𝑙
=

1

ℎ 𝛼66
 𝜐12,𝑒𝑞

𝑔𝑙𝑜𝑏𝑎𝑙
= −

𝛼12
𝛼11

 (23) 

𝐸1,𝑒𝑞
𝑙𝑜𝑐𝑎𝑙 =

12

ℎ3 𝛿11
 𝐸2,𝑒𝑞

𝑙𝑜𝑐𝑎𝑙 =
12

ℎ3 𝛿22
 𝐺12,𝑒𝑞

𝑙𝑜𝑐𝑎𝑙 =
12

ℎ3 𝛿66
 𝜐12,𝑒𝑞

𝑙𝑜𝑐𝑎𝑙 = −
𝛿12
𝛿11

 (24) 

where αij and δij are defined in Eq. (2). Table 1 presents the equivalent orthotropic material properties obtained by 

applying Eqs. (23) and (24) for the layups considered in this paper. 

The results obtained for the critical load of the columns for various lengths are presented in Figure 3. There 

is excellent agreement in the results obtained via Rayleigh-Ritz, FSM, GBT with equivalent orthotropic properties, 

and FEM, except when the loss of stability is due to global buckling, which was out of the scope of the present 

work. It is important to note that for GBT, the critical loads for each laminate were obtained by using the equivalent 
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properties defined in Eqs. (23) and (24), with the lowest value for each length being considered the buckling load. 

Table 1. Equivalent orthotropic material properties. Units of E1, E2, and G12 in GPa. 

Layup 𝐸1,𝑒𝑞
𝑔𝑙𝑜𝑏𝑎𝑙

 𝐸2,𝑒𝑞
𝑔𝑙𝑜𝑏𝑎𝑙

 𝐺12,𝑒𝑞
𝑔𝑙𝑜𝑏𝑎𝑙

 𝜐12,𝑒𝑞
𝑔𝑙𝑜𝑏𝑎𝑙

 𝐸1,𝑒𝑞
𝑙𝑜𝑐𝑎𝑙  𝐸2,𝑒𝑞

𝑙𝑜𝑐𝑎𝑙  𝐺12,𝑒𝑞
𝑙𝑜𝑐𝑎𝑙 𝜐12,𝑒𝑞

𝑙𝑜𝑐𝑎𝑙 

L2 68.817 68.817 4.180 0.0297 68.817 68.817 4.180 0.0297 

L3 14.957 14.957 33.416 0.7891 14.957 14.957 33.416 0.7891 

  

  

Figure 3. Signature curves obtained for (a) isotropic material, (b) layup L1, (c) layup L2, (d) layup L3. 

The results also show that the local buckling mode is dominant for L1 columns, and a shift from local to 

global flexural-torsional mode was observed. A shift from distortional buckling mode to global flexural-torsional 

mode can be observed in the isotropic and laminated L2 and L3 columns. However, for the investigated length 

range, only in layup L3 a transition from flexural-torsional mode to a pure bending mode is noticed. The buckling 

modes for 500 mm length columns are obtained by using pyFSM [12] and presented in Figure 4. 

    

Figure 4. Buckling modes for L = 500 mm: (a) isotropic material, (b) layup L1, (c) layup L2, (d) layup L3. 

4  Conclusion 

The presented methodology proved to be accurate for calculating the critical buckling loads for local and 

distortional modes and the corresponding signature curves for the proposed laminated composite lipped channel 

column, since Rayleigh-Ritz's results are in excellent agreement with those obtained through FSM, GBT, and FEM 

for the aforementioned modes. In addition, the presented procedure can be used together with methodologies based 



P. S. B. Barros, M. F. Pinto, J. P. B. Pontes, L. A. T. Mororó, E. Parente Junior 

CILAMCE-2024 

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Maceió, Brazil, November 11-14, 2024 

 

on obtaining critical loads for global buckling modes to obtain the complete signature curves of lipped channel 

columns. 

Furthermore, for the proposed geometry, it can be observed that the distortional buckling mode stood out, 

except for the cross-ply layup (L2). Additionally, there is a major difference between the local and distortional 

buckling loads for isotropic and angle-ply (L4) columns when compared to the orthotropic (L1) and cross-ply (L2) 

ones. This indicates a strong influence of the layup on buckling behavior. 

Since this is an ongoing work, this methodology needs to be tested for other geometries (bf/bw ≥ 0.8) and 

layups (e.g. antisymmetric cross-ply and angle-ply). In order to enable parametric studies and the future use of this 

procedure in the design of laminated lipped channel columns, it is necessary to consider the material degradation 

and study the influence of geometric imperfections on the post-critical behavior. 
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