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Abstract. The geometrically nonlinear analysis of cantilever beams is well disseminated in current literature since 

many structures can be modelled as a cantilever beam from high towers and long wind turbine blades to 

microbeams used in atomic microscopy. In many applications, particularly those with fluid forces the loads do not 

maintain its direction throughout the analysis. This work addresses the case of large displacements for beams 

considering a harmonic follower transversal load. This type of situation generates interesting nonlinearities and 

has several applications, for example, wind turbine blades where the wind loads remain perpendicular to beam 

axis. In this case, the nonlinear partial differential equation of motion has time varying coefficients, leading to a 

type of Mathieu-Hill equations. This influences the nonlinear dynamic behavior of the structural system as well as 

its stability. According results for large response it’s possible to observe the great influence of load level and initial 

boundary condition, for high level of load or high initial displacement an instability its observed. 
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1  Introduction 

The stability of structures subjected to follower compressive loads has been addressed by many researchers 

in the past [1], [2]. Flutter-type instability or divergence of beams under follower compressive forces depends on 

several factors and parameters. A non-prismatic free-attached beam subjected to an end force that remains tangent 

to the beam axis during deformation (Beck's problem) is a classic example of follower force instability problems 

[1]. However, the investigation of dynamic transversal follower forces is not as widespread in the technical 

literature. This type of situation can be observed, for example, in wind turbine blades. The wind pressure on the 

blade is always perpendicular to the surface of the blade and the change in direction during the deformation process 

becomes important in slender structures subjected to large displacements. Deformations and stability arising from 

static transversal loads were addressed by several researchers adopting analytical [3], [4] and numerical solution 

[5], [6]. When dynamic analysis is included in transversal follower load problems, one eventually falls back on a 

parametric excitation analysis, since the dynamic load also depends on the rotation of the beam at its point of 

application. 

The study of harmonic, forced, damped oscillations and even coupled oscillators is frequently addressed in 

the nonlinear dynamics literature. A particular problem is the analysis of structures under parametric excitation 

where at least one of the coefficients in the differential equation of motion varies with time [7]. When this 

parameter variation induces an oscillatory movement in the system, triggering an internal build-up of energy, we 

have the phenomenon known as parametric instability or parametric resonance. [8], [9]. This has been for many 

decades an important problem in structural dynamics. Parametric excitation leads to a system of homogeneous 

differential equations with time-varying coefficient. The linearized equations result in a system of Mathieu–Hill 

equations, where the unstable solutions grow exponentially. The main instability region occurs when the driving 

mailto:paulo@puc-rio.br


L. Menezes, P. Gonçalves, D. Roehl 

CILAMCE-2024 

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Maceió, Brazil, November 11-14, 2024 

 

frequency is twice the system’s natural frequency. 

In the present paper, the behavior of a cantilever beam subjected to a follower transversal dynamic load is 

considered. This investigation aims to understand the structural behavior of typical slander elements subjected to 

dynamic wind load, in which it always acts perpendicular to the surface. In mathematical terms, the problem is 

analytically modeled for large displacement and subsequently a modal reduction is made using the Galerkin 

method to obtain the nonlinear equations of motion. 

2  Mathematical Formulation 

2.1 Galerkin Method Reduction 

Figure 1a shows the undeformed cantilever beam with a Young modulus E , span L , moment of inertia I , 

cross section area A  and concentrated dynamic load ( )P t applied at the free end. Figure 1b shows the deformed 

cantilever beam where ( )s  is the slope, ( , )y y s t= , the transversal displacement, ( , )x x s t=  the longitudinal 

displacement, s , the local coordinate in deformed axis and t is time. Also, ( , ) Lx x L t x= = , ( , ) Ly y L t y= =  and 

( , ) LL t  = =  

 
 

 

(a) (b) (c) 

Figure 1. Cantilever beam with end dynamic follower load in (a) undeformed state, (b) deformed state with load 

P  following end slope L  and (c) Infinitesimal element of deformed beam in a generic position ( ,x y ) 

Knowing that bending moment is proportional to the change of curvature and stiffness EI ; and the 

curvature is a first derivative of slope [1], the flexural moment at a position ( ,x y ) due to P  is given by: 

 ( ) ( )y L x LEI P x x P y y
s


= − + −


 (1) 

xP  and 
yP  are the components of the follower force in the x and y directions, respectively, and depend on the slope 

at the free end, L : 

 ( ) ( ) sin( )x x LP P t P t = = 
       

( ) ( ) cos( )y y LP P t P t = =   (2) 

Taking the second derivative of equation (1) with respect to s , one obtains: 

 
2 2

2 2y x

x y
EI P P

s s ss s

       
= − −         

 (3) 

By geometry, as illustrated in Figure 1c, the following expressions for the derivatives of x and y with 

respect to s are obtained: 

 cos( )
x

s



=

         
sin( )

y

s



=


 (4) 

The derivative of Eq. (4) with respect to s results in: 

 

2 2

2 2

1
cos( )          

cos( )

y y

s ss s

 




   
= → =

  
 (5) 

See Det. A 

Det. A 
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Substituting Eqs. (4) and (5) into Eq. (3), leads to: 

  
2 2 2

2 2 2

1
cos( )

cos( )
y x

y y
EI P P

ss s s




    
= − − 

   
 (6) 

Considering Taylor series expansions of the trigonometric functions in (5), the following approximations 

are obtained: 

 

2
1 1

1
cos( ) 2

y

s

 
 +  

            

2
1

cos( ) 1
2

y

s


 
 −  

 
 (7) 

Substituting Eqs. (7) into Eq. (6), the following static nonlinear differential equation is obtained: 

 

2 22 2 2

2 2 2

1 1
1 1

2 2
y x

y y y y
EI P P

s s ss s s

            
+ = − − −                      

 (8) 

Adding the inertial and damping forces, results in the following nonlinear partial differential equation of 

motion: 

 

2 22 2 2 2

2 2 2 2

1 1
1 1

2 2
y x

y y y y y y
m C EI P P

t s s st s s s

              
+ + + = − − −                        

 (9) 

and adopting ,s

y
y

s


=


 and  

y
y

t


=


 as the notation, results in: 

 ( )2 3

, , , , , , , , ,1 0.5 3s ssss s ss sss ss y s ss x ssmy Cy EI y y y y y y P y y P y + + − +    + =   − 
 

 (10) 

Taking into account Eqs. (4) and (5) and substituting Eq. (7) into Eq. (2), one obtains: 

 
,x s LP P y == 

       ( )2

,1 0.5y s LP P y ==  −   (11) 

Finally, substituting Eq. (11) into the Eq. (10), the nonlinear equation of motion up to cubic nonlinearities 

takes the form 

 ( ) ( )2 3 2

, , , , , , , , , , ,1 0.5 3 1 0.5s ssss s ss sss ss s L s ss s L ssmy Cy EI y y y y y y P y y y P y y= =
 + + − +    + =  −    −  
 

 (12) 

Using separation of variables, the transversal displacement can be written as ( , ) ( ) ( )y y s t d t s= =  . Thus, 

Eq. (12) takes the form: 

 
( )

( )

2 2 3 3 3

, , , , , ,

2 2 2 2

, , , , ,

1 0.5 3

1 0.5

s ssss s ss sss ss

s L s ss s L ss

md Cd EI d d d d

P d d P d= =

  +  + −   +     +  =
 

 −      −   
 (13) 

Applying Galerkin to Eq. (13), and disregarding (for now) damping for simplification purposes, we have: 

 3 2 4

1 2 3 4( ) ( )Md K d K d P t K d P t K d+ + =  +   (14) 

Considering 0( ) cos( )P P t P t= =  where 0P  and   are module for dynamic force and the excitation 

frequency, respectively, the following equation is obtained after some algebraic manipulations: 

 ( )2 2 202

3 4 cos( ) 0
PK

d d d K K d t d
M M


 

+ + −  +   = 
 

 (15) 

where 1K

M
 =  is the natural frequency of structure and 

 
0

L

M m ds=    (16)  1 ,

0

L

ssssK EI ds=     (17) 
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 ( )2 3

2 , , , , , ,

0

0.5 3

L

s ssss s ss sss ssK EI ds = −   +    + 
   (18) 

 3 , , , ,

0 0

L L

s ss s L ssK ds ds==    −       (19)  
2

4 , , ,

0

0.5

L

s L s ssK ds== −       (20) 

 

The adopted interpolating functions are the free vibration modes of a clamped-free beam given by 

 
1

( ) cosh cos
2

s s s s
s sinh sin

L L L L

   


         
 = − − −         

         
 (21) 

where parameters   and   are given by Blevins [10] for each vibration mode. 

2.2 Approximation by Galerkin-Urabe Method  

The Galerkin-Urabe Method [11], [12] has been susecfully applied to abtain an approximate responses of 

nonlinear dynamic systems under harmonic loads. Assuming the the steady state of Eq. (15)  as cos( )d A t=  , 

multiplying it by the weighting function cos( )t  and integrating over one period (from 0 to 2 /   ) results in: 

 

2 2 2 2 22 /
1 2 0 3 42

0

cos ( ) cos ( ) ( cos ( )) cos( )
cos( ) cos( ) 0

K K A t P A t K K A t A t
A t t dt

M

    +  −   +    −   +  =
  



 (22) 

Solving Eq. (22) we have the following  analytical expression correlating the load magnitude 0P , the 

forcing frequency   and the  ampitude of the steady-state response A   

 

2 2

2 1

0 3

4 3

6 8 8

5 6

K A M K
P

A K AK

−  +
=

+
 (23) 

Figure 2 shows the correlation between the normalized beam displacement /A L  with the normalized 

dynamic load 2

0 /P L EI  for selected values of / , based on Eq. (23).  

 

Figure 2. Correlation between the normalized beam displacement /A L  with the normalized dynamic load 

parameter 2

0 /P L EI  for selected values of /  

3  Numerical Results and Discussions  

To understand the dynamic response and stability of the dynamical system, Eq. (15) is numerically integrated 

using the Runge-Kutta algorithm implemented in Matlab [13]. Table 1 presents the geometric and material 

parameters for the beam used in the numerical analysis. Considering only the first vibration mode in the Galerkin 

process, 1.875 =  and 0.734 =  in Eq. (24). 
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Table 1. Beam Geometrical and Material Properties 

Parameter Nomenclature Value 

Beam span L  5.0 m  

Young Modulus E  112.0 10  N/m²  

Distributed mass m  1256 /kg m  

Moment of inertia I  0.0021 
4m  

The curve for / 1 =  (main resonance region) in Figure 2  is compared with the numerically obtained 

results in Figure 3 for selected values of the normalized transverse load 2

0 /P L EI . The highlighted values in  

Figure 3 corresponds to the approximate response of /A L  for the following load parameters: 2

0 / 5P L EI = , 
2

0 / 15P L EI = , 2

0 / 20P L EI =  e 2

0 / 22.3P L EI = . For these same points, the response in time domain was 

obtained using the Runge-Kutta method considering an initial displacement 0 / 0.1d L = . Figure 4 shows the steady 

state displacement are in agreement with the value estimated by the approximate response in Figure 3 for the load 

levels 2

0 / 5P L EI = , 2

0 / 15P L EI =  and 2

0 / 20P L EI = . 

 

Figure 3. Approximate response for dynamic module displacement normalized by beam length /A L  for several 

normalized dynamic load module 2

0 /P L EI  and / 1 =  

For 2

0 / 22.3P L EI =  (see Figure 5) adopting an initial displacement 0 / 0.1d L =  the reponse is clearly 

unstable, with the time response growing exponentially up to a point where it tends to infinity. However, changing 

the initial displacement to a value closer to the expected response amplitude, 0 / 0.2d L =  (see Figure 6) the 

response converges to the steady state magnitude / / 0.453A L d L =  near the predicted value ( / 0.449A L = , 

see Figure 3). For 2

0 / 20P L EI =  a large amplitude steady state response of / 0.981A L =  (see Figure 3) is 

predicted. Using in the numerical integration the initial displacement 0 / 0.9d L = , close to expected amplitude, it 

is observed in Figure 7 that, after a long transient, the displacement decreases to that previously obtained in Figure 

4(c1) for the same load level. This demonstrates that the lower branch of the response is stable up to the limit point 

in Figure 3 becoming after this point unstable. Also the results show that, as one approaches the limit points, 

smaller perturbations are necessary to achive convergence, indicating a decrease of the basin of attraction of the 

stable solution. 

 

   
(a1) (b1) (c1) 

   

Fig. 5 and Fig 6 

Fig. 4(b) 

Fig. 4(c) 

Fig. 7 

0.0632 
0.213 

0.3346 

0.449 

22.3 

0.981 

0.065 0.214 0.3367 

Saddle-Node 

Fig. 4(a) 
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(a2) (b2) (c2) 

Figure 4. Transversal displacement time history (a1 to c1), and FFTs (a2 to c2) considering 0 / 0.1d L = , =  

and for several values of dynamic module load 0P : (a) 2

0 / 5P L EI = , (b) 2

0 / 15P L EI = , (c) 2

0 / 20P L EI =  

  
(a) (b)  

Figure 5. Transversal displacement time history (a), phase space (b). 0 / 0.1d L = , 2

0 / 22.3P L EI =  

  
(a)  (b) 

Figure 6. Transversal displacement time history (a), phase space (b). 0 / 0.2d L = , 2

0 / 22.3P L EI =  

   
(a)  (b) (c) 

Figure 7. Transversal displacement time history (a), phase space (b) and FFT (c). 0 / 0.9d L = , 2

0 / 20P L EI =  

Instability Instability 

0.453 

0.3367 
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4  Conclusions 

This work investigated the nonlinear dynamic behavior of a clamped-free beam under a transverse follower 

force. This generates a partial differential equation with time-varying parameters, leading to a type of parametric 

excitation. This type of oscillation is very sensitive to the load parameters and characteristics of the structure, as 

well as the initial boundary condition. Because the external load is linked to the beam slope at the application 

point, the stability of the solution depends on the load parameters and initial conditions. The solution obtained by 

the Galerkin-Urabe method depicts a saddle-node bifurcation separating the stable and unstable branches. 
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