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Abstract. In this work, the nonlinear normal modes are applied to analyze the nonlinear forced vibrations of
a simply supported cylindrical shell with internal resonances. The nonlinear equilibrium equations are obtained
considering the Donnell’s nonlinear shallow shell theory. The modal solution to the transversal displacement
field, used to discretize the equilibrium equations, is obtained by perturbation techniques that consider an internal
resonance between the linear vibration modes. The discretized equations of the reduced order model are obtained
using an invariant manifold approach. The nonlinear dynamic behavior is analyzed from the resonance curves
that are obtained by the continuation method. The resonance curves are obtained for both full and reduced order
models, and these results are compared to determine the level of a harmonic load that can be reliably represented
by a reduced order model. Several multi-modes are considered to assemble the best nonlinear normal modes basis
that contains the most important information of the interactions that occur between the modes of the transversal
displacement field. Time responses and phase portraits, with mapping Poincaré sections, are also used to analyze
the nonlinear dynamic behavior of the cylindrical shell and to check the accuracy of the reduced order models.
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1 Introduction

Nonlinear normal modes (NNMs) extend the concept of linear normal modes to systems where nonlinearities
can significantly influence dynamics where NNMs take into account for nonlinear interactions between the vibra-
tion modes which, in their turn, can lead to complex behaviors such as mode coupling, energy transfer between
modes, and changes in mode shapes with amplitude variations. On the other hand, Linear normal modes (LNMs)
describe the behavior of linear systems where all modes are independent, oscillating at their natural frequencies
without interaction between them.

Many works have been developed in this research field, with some interesting findings as the work Nayfeh
et al. [1] that explores weakly nonlinear discrete systems with cubic geometric nonlinearities, revealing that NNMs
can out perform linear modes in the presence of internal resonances. Renson and Kerschen [2] introduce a compu-
tational method to compute the NNMs in non-conservative systems, solving partial differential equations to capture
the modes’ geometry and the frequency-energy relationships without using time integration. Hill et al. [3] focus
on the forced responses of nonlinear systems and analysis of significance of the NNMs, identifying which NNMs
are pertinent to understanding the forced response through analytical investigations and energy arguments to relate
NNMs to the forced responses.

In general, NNMs are characterized by their ability to describe the motion of nonlinear systems as invariant
manifolds in phase-space, where the system’s behavior can be reduced to a lower-dimensional representation. This
approach captures the essence of the system’s dynamics, including phenomena such as internal resonances which
occur when the natural frequencies of the system satisfy certain commensurate relations, leading to strong modal
interactions.

So, this work deduces a reduced order models (ROMs) through a invariant manifold method to evaluate the
dynamics of a simply-supported cylindrical shell with internal resonance harmonically excited. Several multi-
modes ROMs are considered to assemble the best nonlinear normal modes basis that contains the most important
information of the interactions that occur between the modes of the transversal displacement field. Time responses
and phase portraits, with mapping Poincaré’s sections, are also used to analyze the nonlinear dynamic behavior of
the cylindrical shell and to check the accuracy of the reduced order models. The obtained results show a complex
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behavior of forced response of shell with strong influence of the master variables used to derive the ROMs and the
magnitude of the transversal time-dependent load.

2 Problem formulation

A perfect cylindrical shell with radius R, length L, and thickness h is illustrated in Figure 1, where h <<
R. In this figure, the displacement fields in the directions axial u, circumferential v, and transversal w are also
presented, which correspond to the cylindrical coordinate system x, θ, and z, respectively. The cylindrical is made
by an isotropic, homogeneous and linear material with Young’s modulus E, Poisson’s ration ν and density ρ.
The nonlinear equilibrium equations of the cylindrical shell are derived using the well-known Donnell’s nonlinear
shallow shell theory. These equations can be written in terms of the transversal displacement field w and the Airy’s
stress function Φ [4]:

ρhẅ + 2η1ρhω0ẇ +D∇4w =
1

R
Φ,xx +

1

R2
(Φ,θθw,xx − 2Φ,xθw,xθ +Φ,xxw,θθ)− P (t) (1)

1

Eh
∇4Φ = − 1

R
w,xx +

1

R2

(
w2

,xθ − w,xxw,θθ

)
(2)

where D(= Eh3/12(1 − ν2)), ω0, η1 and P (t) are the flexural stiffness, the lowest natural frequency, the
viscous damping factor and the transversal time-dependent load, respectively.

Figure 1. Geometry of cylindrical shell and coordinates systems

To discretize the eq. (1) by a Galerkin method, the Airy’s stress function Φ is analytically solved through
the compatibility and continuity geometric equation, eq. (2). To solve this indeterminate stress function, many
techniques can be applied. As identified in eq. (2), this equation is a biharmonic equation which any harmonic
function is also a biharmonic solution. In this work, a particular transversal displacement field, that is composed
by harmonic functions, is chosen a priori. To obtain the solution of the stress function Φ, it is required to substitute
this displacement field into eq. (2), and the stress function is determined by solving Φ through the indeterminate
coefficients method.

3 ROM through invariant manifold techniques

Deriving a consistent reduced-order model for a cylindrical shell using invariant manifolds involves several
steps. Firstly, using the following general modal solution for the transversal displacement field, that was obtained
by perturbation method as presented in [5, 6],

w =
∑
β=1,3

∑
i=1,3

{[
Wi,β (τ) cos (inθ) +WC

i,β (τ) sin (inθ)
]
sin (βqξ)

}
+

∑
i=0,2

{[
Wi,2 (τ) cos (inθ) +WC

i,0 (τ) sin (inθ)
] [3

4
− cos (2qξ) +

1

4
cos (4qξ)

]}
,

(3)
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the nonlinear equilibrium equation, eq. (1) is discretized by a Galerkin method, and a full set of second-order
differential equations for the dynamics of the cylindrical shell is derived in terms of the the modal amplitudes
W,WC that are related with driven and companion modes, respectively. These modal amplitudes provoke an
internal resonance of type 1:1 and from a vast literature on this topic, these modes need to be considered to
describe the correct nonlinear dynamic behavior of the shell [7, 8]. In eq. (3) the following parameters are used:
q = mπ, η = x/L, with 0 ≤ η ≤ 1, τ = tω0, where m and n are, respectively, the number of axial half-waves
and circumferential waves associated with the vibration modes of the lowest natural frequency.

The invariant manifolds are lower-dimensional surfaces in the phase space of the dynamical system where the
system’s trajectories evolve. To identify these manifolds, one typically looks for slow and fast dynamics separation.
The idea is that the system’s behavior can be described by a few dominant modes (slow dynamics), while the rest
of the modes (fast dynamics) quickly decay and can be approximated as slaved to the dominant modes. This
is achieved using Center Manifold Theory which can be used to rigorously justify the existence of an invariant
manifold where the center manifold is a low-dimensional manifold that attracts trajectories starting near it. Thus,
to project the dynamics onto the invariant manifold, it is need to express the high-dimensional state vector in terms
of a few coordinates that describe the motion on the manifold. This step often uses a parameterization method in
which this work uses a function of a nonlinear invariant manifold, derived using methodology as shown in [9].

Assuming a discretized system of first order differential equilibrium equations in the following manner:

Fi (t, yi, ẏi) = 0 (4)

where yk and ẏk corresponds to kth displacements and velocities fields of the set of differential equations,
respectively, and i is ith first order equilibrium equation. An isomorphism is also assumed to exist between
the motion of one or multiple master pairs of displacement and velocity which controls the dynamics of the set of
equilibrium equations. Then, this nonlinear transformation defines a nonlinear normal mode in space configuration
and can be expressed as:

yk = Xk(uj , vj) = ai1kuj + ai2kvj + ai3kujuj + ai4kujvj + ai5kvjvj+

ai6kujujuj + ai7kujujvj + ai8kujvjvj + ai9kvjvjvj

ẏk = Yk(uj , vj) = bi1kuj + bi2kvj + bi3kujuj + bi4kujvj + bi5kvjvj+

bi6kujujuj + bi7kujujvj + bi8kujvjvj + bi9kvjvjvj

(5)

where Xk and Yk are surfaces that describe a motion near an equilibrium point for the displacement and
velocity fields, respectively. uj and vj are jth chosen pair of displacement and velocity called in the technical
literature as master variables, also aik and bik are coefficients to be calculated using a invariant manifold equation
(6).

Taking the expansions of eq. (5) and using the differentiation chain rule, the explicit time dependence is
eliminated [10]:

ẏk =
∂Xk(uj , vj)

∂uj
uj +

∂Xk(uj , vj)

∂vj
vj

ÿk =
∂Yk(uj , vj)

∂uj
uj +

∂Yk(uj , vj)

∂vj
vj

(6)

To obtain the ROMs, applying the nonlinear normal modes, this work considers as the full model (Model
A) the set of discrete equilibrium equations obtained using the transversal displacement field using the following
modal amplitudes: W1,1,W

C
1,1,W0,2, W2,2,W

C
2,2,W1,3,W

C
1,3,W3,1,W

C
3,1,W3,3,W

C
3,3 in eq. (3). The ROMs are

obtained considering different pairs of master variables, and these pairs are selected from the modes of the full
model. Two different ROMs, named Model B and C, are derived, considering the presence of the driven and
companion modes of the transversal displacement field, eq. (3). Model B is assembled with solely two pairs of
master variables, namely (u1, v1) and (u2, v2) that refers to W1,1,W

C
1,1. This means that the modal amplitudes

used in this model take into account the internal resonance 1:1, emerging from the consideration of both driven and
companion modes of eq. (3). Model C is built by choosing the pairs (u1, v1), (u2, v2) and (u3, v3) as the master
coordinates that are related to modal amplitudes W1,1,W

C
1,1, and W0,2, respectively.
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4 Numerical results

To obtain the following numerical results, the physical and geometric parameters are a cylindrical shell of
radius R = 0.2m, length L = 0.4m and thickness h = 0.002m, with an elastic isotropic material that follows the
properties E = 2.1 × 1011N/m2, ν = 0.3 and ρ = 7850kg/m3. Also, the viscous damping is set to η1 = 0.001.
To describe the time-dependent lateral harmonic pressure, it is assumed that the pressure has the same shape of the
driven mode, i.e.

P (t) = PL cos (nθ) sin (qξ) cos

(
ω1

ω0

τ

)
, (7)

where ω1 is the excitation frequency of the lateral pressure, and PL is the amplitude of the lateral pressure,
that directly excites the driven vibration mode. For this geometry and boundary conditions, the lowest natural
frequency of the cylindrical shell occurs for the vibration mode (m, n) = (1, 5).

A parametric analysis of the resonance curves is conducted. For that, the maximum amplitude of the driven
mode is computed by varying the external excitation frequency and for different amplitude of the lateral pressure.
These numerical results (resonance curves) presented in this section are obtained by AUTO that is a continuation
and bifurcation identification software for dynamical systems [11].

(a) (b)

(c) (d)

Figure 2. Comparison of the resonance curves of drive mode (W1,1) for (a) PL = 0.0012566, (b) PL = 0.001478,
(c) PL = 0.001795 and (d) PL = 0.003141. Blue line - Model A (Full model), Green line - Model B (W1,1,W

C
1,1),

Red line - Model C (W1,1,W
C
1,1, and W0,2). Continuous line (stable path), Dashed line (unstable path).
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Figure 3. Zoomed view of Fig 2 (d) in the resonance peak for PL = 0.001478. Blue line - Model A (Full model),
Green line - Model B (W1,1,W

C
1,1), Red line - Model C (W1,1,W

C
1,1, and W0,2). Continuous line (stable path),

Dashed line (unstable path).

(a) (b)

(c) (d)

Figure 4. Comparison of the resonance curves of companion mode (WC
1,1) for (a) PL = 0.0012566, (b) PL =

0.001478, (c) PL = 0.001795 and (d) PL = 0.003141. Blue line - Model A (Full model), Green line - Model B
(W1,1,W

C
1,1), Red line - Model C (W1,1,W

C
1,1, and W0,2). Continuous line (stable path), Dashed line (unstable

path).
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Figure 2 shows a comparison of the resonance curves obtained by all three models for successively increments
of the amplitude of the lateral pressure. As show in Figure 2 (a) and (b), Model B can accurately match the full
model only for small loads that generates vibrations amplitude up to order of thickness of the shell. However, it can
accurately capture the general dynamic behavior of shell such as the limits points, changes of stability, bifurcation
points and the secondary nonlinear equilibrium path. This result was expected since it is a fundamental property
of the time-invariant manifold to recover the essential dynamical properties and the qualitative behaviour (number
and nature of bifurcations) will always be predicted by the ROM [12].

Model B, which are composed only of fundamental modes (W1,1,W
C
1,1), shows your limitations for very

large amplitudes displacements where vibrations amplitudes above thickness of the shell leads to lost of accuracy,
but maintaining the correct type of the nonlinearity as well as the bifurcations points. On the other hand, Model
C also lost accuracy but with a better match with the full model (Model A). In regards of losing accuracy on the
secondary nonlinear equilbrium branch, Figure 3 shows that Model C was able to describe stable paths accurately
in some extent, which are most important to analyse global stability.

Observing the accuracy of the ROMs in the resonace curves of the companion mode, Figure 4 shows that the
accuracy of ROM is improved when the ROM includes the modal amplitude W0,2 as master variable in conjunction
with (W1,1,W

C
1,1), allowing to recover the vibration amplitudes with high accuracy. As observed in this figure,

there is a lost of accuracy with the increasing of the amplitude of the lateral load.

5 Conclusions

In this work, the time-independent invariant manifold was assembled to determine a reduced-order model
(ROM) of a cylindrical shell with 1:1 internal resonance. The nonlinear equilibrium equation displays quadratic
and cubic nonlinearities due to Donnell’s nonlinear shallow shell theory. This computation allows to express of
the dynamics in an invariant-based span of the phase space used as master variables for the derivation of ROMs
of continuous structures with geometrical nonlinearities. The main focus of this work relied on the influence of
energy on the system and which master variables are better suited to the assembly of the representative ROM for
a cylindrical shell. For the derivation of the ROMs of externally forced structure, the approximation, consisting of
using time-independent manifolds for reducing the dynamical systems, has been discussed, with the inclusion of an
axisymmetrical mode of the transversal modal solution of the cylindrical shell. The drawback of losing accuracy
for high values of the forced vibration amplitude was solved in this ordinary differential equation system, obtaining
numerical results that are slightly different from the full dynamical system model depending on the inclusion of
the master variables that span a subspace of invariant manifold. The numerical results of the cylindrical shell show
that the ROMs predicted the correct nonlinear behavior. On the other hand, there were discrepancies between the
ROMs and the full dynamical system with the increasing of the forcing amplitude, leading to a loss of accuracy
when the vibration amplitude was up to the order of two times the thickness of the cylindrical shell. It’s worth
noting that these results were obtained by reducing a discrete model with eleven degrees of freedom (DOF) to a
ROM with only three DOF, which underlines the main advantage that a correct multi-mode ROM can bring a very
close agreement between full and reduced models with high forced vibration amplitudes.
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