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Abstract. In this study, the behavior of a shell with a spherical cap geometry was investigated, where the boundary 

condition was established by crimping the base circumference. The material properties ranged from linear elastic 

to hyperelastic, with validation conducted using elastic theory. Deformation-displacement relationships were 

determined using Novozhilov nonlinear shell theory adapted for spherical shells. Hooke's Law was employed for 

linear elastic materials, while the Neo-Hookean model represented the nonlinear elastomeric material. The 

Rayleigh-Ritz numerical method applied to the Potential Energy Functional was used to derive the energy-based 

equation, with trigonometric functions employed for circumferential direction approximation and Legendre 

polynomials for the meridional direction. Results showed natural frequency values consistent with literature, as 

well as nonlinear behavior observed through frequency-amplitude relationships. Static behavior under uniformly 

distributed dead load was also validated against existing literature. 
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1  Introduction 

Shells are prevalent in engineering and are utilized across various sectors including aerospace, aeronautics, 

mechanics, shipbuilding, civil engineering, and even biotechnology. In construction, they are predominantly 

employed in roofing applications, particularly in the roofs of large structures such as the domes of historic 

cathedrals.  

This paper focuses on spherical shells belonging to the category of shells of revolution, characterized by 

having a rotational axis, often referred to as a generatrix, as demonstrated by Brasil [1]. Dias [2] studied the 

contribution made in the formulations by authors like Reissner – Meissner, Hildebrand, Sander’s e Flügge-Lur'e – 

Byrne. And authors like Alhazza [3], Du et.al [4] and Shen et. al [5] based their research on classical theories. 

When discussing the physical attributes of an element, the type of material comprising it defines its properties. 

For instance, elastomeric materials, particularly hyperelastics, possess the ability to rapidly alter and regain the 

initial dimensions of the object under stress. This behavior stems from the fact that elastomers constitute a group 

of rubbery polymers with chemical and physical cross-links.  

Hoss [6] elaborates on the evolution of the constitutive relations of hyperelastic materials, which is marked 

by the development of various physical-mathematical models categorized based on genealogy and chronology, 

including names like Mooney, Treolar, Rivlin, Sanders, Odgen and Yeoh. 

This study investigates the behavior of spherical caps constructed from elastic and hyperelastic materials, 

aiming to compare the outcomes of these materials to delineate differences in linear and nonlinear analyses. 

Novozhilov's theory was employed to characterize the geometry of the cap. For the materials, Hooke's theory was 

applied to elastic materials, and the Neo-Hookean theory was utilized for hyperelastic materials. 
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2  Mathematical Formulations 

The spherical cap's geometry was derived from Larriccio and Pellicano [7], who defined parameters such as 

radius 𝑅, radius of the circular base 𝑎, height s, half-opening angle 𝜙𝑏, and thickness ℎ, as illustrated in Fig. 1. The 

curvilinear coordinate system adopted was (O, 𝜙, 𝜃), where O denotes the origin, and 𝜙 and 𝜃 represent the 

meridional and circumferential coordinates, respectively. 

Additionally, was introduced three displacement fields to characterize the motion of a general point P on the 

surface. Considered 𝑢(𝜙,𝜃,𝑡), 𝑣(𝜙,𝜃,𝑡), and 𝑤(𝜙,𝜃,𝑡), as the displacements in the meridional, circumferential, and 

radial directions, respectively, with 𝑡 denoting the temporal variable. 

 

 

 

Sectional View Base View 

Figure 1. Spherical Cap Coordinate System (Larriccio and Pellicano [7]) 

2.1 Novozhilov Theory applied to Spherical Caps 

Novozhilov's classical theory for doubly thin curved shells is based on the Love-Kirchhoff assumptions, in 

which the linearity approximation is considered. Also is considered the Vlasov definition approximation about the 

curvature, that was applies to a spherical cap with a small elevation 𝑠 compared to the radius of the base circle 𝑎 

(where the ratio 𝑠/𝑎 must be less than 1/5). Therefore, the Lamé coefficients can be written by the eq. (1). 
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The non-dimensional meridional coordinate, derived from the relation 𝜂=𝜙/𝜙𝑏, is utilized. To avoid 

singularity problems, the initial value of 𝜂0 adopted is 0.00125. 

The components in the curvilinear coordinate system for the spherical cap can be written according to the eq. 

(2) until eq. (7). 
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The deformations at an arbitrary point on the shell are given by eq. (8) until eq. (10). 
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And the components of the deformations and curvature changes are shown in eq. (11) until eq. (16). 
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2.2 Potential Energy Functional and Work of External Forces 

The Energy Functional, eq. (17), is formulated as a combination of the internal strain energy 𝑈𝑆 eq. (18), 

kinetic energy 𝑇𝑆, eq. (19), and Work of External Forces 𝑊𝑆, eq. (20), when static behavior is considered. 
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where, 𝑆 denotes the area of the average surface, which, in this context, refers to the average surface of the 

shell, and 𝑉 represents the volume. Additionally, the variable 𝑊signifies the strain energy density, 𝜌𝑆 denotes the 

density of the material, and qz represents the distributed dead load applied to the external surface. 
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2.3 The internal Strain Energy 

The internal strain energy 𝑈𝑆 is defined by the strain energy density, 𝑊, that is described by the material 

used. For elastic materials, 𝑊 is written from Hooke's law and, after doing mathematical manipulation, 𝑈𝑆 can be 

write as eq. (21). 
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The strain energy density, 𝑊, for non-linear material, the Neo-Hookean model is described by eq. (22). 
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where 𝐼1 is the first deformation invariant shown in eq. (23); and 𝜇1, the material parameter, can be described 

as a function of the Modulus of Elasticity, E, by eq. (24) when use ν = 0.5.  
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The expression for the transverse strain can be written as a series around zero and composed of the 

components of the other strains, like eq. (25). 
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2.4 Rayleigh-Ritz Method 

The approximated functions of the displacements used on Rayleigh-Ritz Method was shown on eq. (26) until 

eq. (28).  
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In this case, the shape functions are trigonometric and are already written as a function of the coordinate 

system used. In addition, the nodal coefficients (𝑈𝑚,𝑛,  𝑉𝑚,𝑛 , 𝑊𝑚,𝑛) are written as a function of m and n, i.e. the 

half-waves generated in the two directions (meridional and circumferential).  

The Legendre polynomial 𝑃𝑚* (η)= 𝑃𝑚* (2η-1), m is the m-th Legendre polynomial of the first displaced type 

in the domain η ϵ [0,1]. The function f(t) = cos (ωt) was used to dynamic behavior. After that, applied the derivation 

of Functional.  
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3  Numerical Results 

The geometric characteristic of the spherical cap is R = 0.8 m; h/R (h) = 1/300 (0.00267 m); a = 0.152 m; 

s = 0.0147 m; 𝜙𝑏 = 11° = 0.191986 radians. The physical properties considered include E = 1247060.2 Pa; 

ρs = 1380 kg/m³, ν = 0.5, with crimping applied throughout its base. The degrees of freedom (dof) adopted was 14.  

3.1 Natural Frequencies in Free Vibration 

Comparing the natural frequency responses found for the elastic and hyperelastic cases, the elastic frequency 

value is considerably lower than the hyperelastic frequency, in the order of 0.016%. The values are exposed on 

Tab. 1. 

Table 1. Comparison of Natural Frequencies (elastic and hyperelastic materials) 

Elastic 𝜔 (rad/s) Hyperelastic 𝜔 (rad/s) 

51.7381 51.7465 

The values of the natural frequencies suggest similarity in the vibration modes obtained by changing the type 

of material, which is best ascertained by analyzing the behavior of the displacements (u, v and w) normalized by 

the maximum value, as shown Fig 2.  

 

  

Elastic Hyperelastic 

Figure 2. Displacements by Vibration modes 

In both cases the transverse displacement is the biggest one. And the hyperelastic mode revel that are bigger 

half-waves than the elastic mode.  

3.2 Frequency – amplitude (non-linear dynamics) 

The frequency-amplitude relation was applied to the center coordinates of the spherical cap (θ=0°, R=0.8 e 

η=0), and the amplitude chosen was the nodal coefficient 𝑊2,0 normalized by the thickness ℎ. The curve behavior 

was exposed on Fig. 3.  

Analyzing the curves revealed a consistent non-linear pattern in the stiffness gain across both elastic and 

hyperelastic scenarios. While there's minimal discrepancy between the two cases, it's evident that the hyperelastic 

material exhibits a higher amplitude. 
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Elastic and Hyperelastic Hyperelastic (extended) 

Figure 3. Frequency - Amplitude (Elastic x Hyperelastic materials) 

3.3 Static Analysis 

The equilibrium paths for the elastic and hyperelastic cases are depicted in Fig. 4. It's evident that as the load 

rises, the displacement values similarly increase in both scenarios. Moreover, the elastic material exhibits 

considerably smaller displacements compared to the hyperelastic case under identical loading conditions, after the 

section where it experiences greater loading gain than displacement. This suggest that is only the beginning of the 

hyperelastic curve, that will increase more displacements after that. 

 

  

Elastic and Hyperelastic Hyperelastic (extended) 

Figure 4. Load versus displacement relations (Elastic x Hyperelastic materials) 
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4  Conclusions 

In this investigation, we delve into the nonlinear static and dynamic characteristics of a thin spherical cap 

employing an energy-based methodology. Material properties are delineated through the utilization of Hooke's 

Law for the elastic regime and the neo-Hookean model for the hyperelastic domain. 

Upon examining free vibration, the hyperelastic cap exhibits little higher natural frequencies compared to the 

elastic counterpart. Additionally, a subtle difference in mode shapes emerges between the two materials, with the 

hyperelastic material demonstrating larger half-waves than elastic. Furthermore, the nonlinear tendencies observed 

in free vibration reveal that both materials experience stiffness gain, but the hyperelastic material demonstrates 

slightly greater stiffness compared to the elastic material. 

In terms of equilibrium paths, it is observed that the elastic material undergoes smaller displacements relative 

to the hyperelastic material after a section that present more gain of load than displacement. 

These divergences in behavior underscores the propensity of hyperelastic materials to exhibit augmented 

displacements and higher vibrations. 

Acknowledgements. The authors would like to express their gratitude to the Coordination for the Improvement 

of Higher Education Personnel (CAPES) for the financial support provided for the research conducted. 

Additionally, they extend thanks to the Computational Mechanics Laboratory (LABMEC) at the School of Civil 

and Environmental Engineering, Federal University of Goiás, for the technological support in data collection for 

this article. 

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the 

authorship of this work, and that all material that has been herein included as part of the present paper is either the 

property (and authorship) of the authors or has the permission of the owners to be included here.  

References 

[1] R. M. L. R. F Brasil. Sheets, plates and shells in aerospace engineering. Blucher, 1a ed. 164 p. São Paulo, 2020. 

[2] A. Dias. Stress Analysis in Semi-Thick Revolution Shells using the Finite Differences Method. Advisor: Raul Guenther. 

1981. Dissertation (Master's). Mechanical Engineering Course. Federal University of Santa Catarina. Santa Catarina, Brazil, 

1981. Accessed. Apr 16, 2023. Available at: 

https://repositorio.ufsc.br/xmlui/bitstream/handle/123456789/76740/180788.pdf?sequence=1&isAllowed=y. 

[3] K. A. Alhazza. Nonlinear Vibrations of Doubly Curved Cross-Ply Shallow Shells. Supervisor: Dr. Ali H. Nayfeh. 2002. 

Dissertation (Doctoral Degree). Mechanical Engineering. 

[4] Y. Du. et al. Free vibration of spherical cap subjected to various boundary conditions. Advances in Mechanical 

Engineering, 2019. 

[5] Y. Shen. et al. Predicting the Type of Nonlinearity of Shallow Spherical Shells: Comparison of Direct Normal Form with 

Modal Derivatives. Advances in Nonlinear Dynamics, Proceedings of the Second International Nonlinear Dynamics 

Conference (NODYCON 2021). Vol. 1 (pp.361-371). 

[6] L. Hoss. Hyperelastic Constitutive Models for Incompressible Elastomers: Adjustment, Performance Comparison, and 

Proposal of a New Model. Advisor: Prof. Dr. Rogério José Marezak. Dissertation (Master's). Rio Grande do Sul, 2009. 

Accessed on Apr 17, 2023. Available at https://lume.ufrgs.br/handle/10183/16310. 

[7] G. Larriccio and F. Pellicano. Nonlinear Dynamics and Stability of Shallow Spherical Caps Under Pressure Loading. 

Journal of Computational and Nonlinear Dynamics, 2021. 


