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Abstract. This study investigates the dynamic interaction between a human jumper and a concrete rectangular
plate under cyclic vertical jumps. The plate is described using Von Kármán’s nonlinear relations, while the jumper
is modeled as a spring-mass-damper (SMD) system with a harmonic force acting on the human’s center of mass to
represent the propulsion force during jumping. The mechanical system is described by a set of piecewise smooth-
touch nonlinear differential equations, allowing the loss of contact between the jumper and the plate during jumps.
The results show that the jumper exhibits complex dynamics, including periodic and chaotic responses, depending
on the system’s parameter combinations. Additionally, the SMD model can affect the mechanical behavior of
the plate by coupling the jumper’s vibration modes with the structure’s, creating new resonance frequencies and
redistributing the vibrational energy.
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1 Introduction

Loads resulting from rhythmic human activities such as walking, running, dancing, and jumping are com-
monly observed in structures like walkways, floors of buildings with large spans, and grandstands. These activities
are often prompted by visual and/or auditory stimuli, particularly in environments such as dance clubs, concert
halls, fitness centers, and stadiums during sporting events. Before understanding the interactions between humans
and structures, particularly regarding induced structural vibrations, it is essential to rigorously study and char-
acterize the behavior of the human body during activity and the consequent loads applied to the structure. The
characterization these loads is complex, as various factors influence them, including individual characteristics such
as gender, weight, age, physical fitness, and the manner of performing the activity. Furthermore, these loads can
be classified based on the direction of body movement and motor execution, directly affecting how body mass is
projected [1].

For instance, in walking, running, and oblique jumps, the displacements and velocities of the human body
over time are analyzed in two components: vertical and horizontal. The vertical component results from leg flexion,
while the horizontal component is due to the individual’s movement on the plane. Conversely, for vertical jumps,
only one component is considered since the movement predominantly occurs along the vertical axis, with minimal
horizontal displacement. Moreover, a distinction is made between human movements where the feet maintain full
contact with the structure and those where contact is lost. During walking, for example, it can be assumed that at
least one foot remains in contact with the structure at all times, unlike in jumping, where the feet momentarily lose
contact. As shown in Figure 1, rhythmic vertical jumps can be decomposed into flight and contact phases, during
which human and structural behavior may change.

The contact phase begins with preparation, where the jumper lands and prepares for the jump. This is followed
by the propulsion period, which is subdivided into compression (loading) and extension (unloading) stages. In
the compression stage, the jumper flexes their knees, accumulating energy. In the extension stage, the knees
extend, releasing energy and resulting in take-off. According to Ref. [2], human biodynamic properties, such
as the stiffness of the lower limbs, can vary between these stages. After take-off, the individual enters free fall
until touch-down, restarting the preparation period. Depending on the propulsion force and system parameters,
decoupling may not occur or may be negligible due to low jump amplitude. This movement, with no significant
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loss of contact, is known as bobbing or bouncing. A complete jumping period (T ) is the sum of contact time
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Figure 1. Human movement during rhythmic vertical jumps [Adapted from [3]].

(tc) and aerial time (ta). Thus, the coefficient αC = tc/T estimates the proportion of the contact period in the
rhythmic jump period. Ref. [4] found that αC varies with jump frequency and averages around 0.63. For bobbing,
these values are indistinguishable due to full foot contact with the floor. Additionally, it has been observed that leg
stiffness can change depending on the chosen jump frequency, exhibiting nonlinear behavior.

Another important aspect is the maximum impact factor (kp) applied to the floor, given by the ratio of the
reaction force on the structure to the individual’s body weight. This factor depends on the jump excitation fre-
quency, as individuals adapt their biodynamic parameters to maintain balance and periodicity. Normalized force
values (kp) exceeding 5 may be physiologically unacceptable, potentially causing knee injuries [5]. When the
normalized force response (kp) peaks, the body’s center of mass (C.O.M) displacement is minimal, and velocity
is zero, indicating the limit of knee flexion. At takeoff, the velocity reaches a maximum, then decreases against
gravity.

During the flight period, when the displacement of the center of mass reaches a maximum, the velocity
returns to zero. Generally, time responses for displacements and velocities are phase-shifted by π/2. The velocity
shows a linear variation during flight, graphically resembling shark teeth. Body movement is often characterized
by accelerometers positioned in the lumbar spine region, where the center of mass is located [6, 7].

Experimental studies indicate that humans can jump at frequencies from 1.5 to 3.5 Hz on slightly oscillating
or rigid floors [8–10], with 2.0 Hz being more comfortable for groups without a fixed jump frequency target [4].
Although dominant harmonics exist in evaluating jump frequencies, experimental responses tend to show energy
leakage to adjacent harmonics.

This indicates that human movement on floors during jumps may not be periodic, depending on system
parameters, especially in more oscillating systems prone to interaction. This interaction is influenced by intra-
variability, the individual’s ability to vary their biodynamic properties as jump frequency changes, aiming for a
more comfortable movement. In the works of Ref. [11, 12], it was observed that duplications of the body’s center
of mass oscillation period can occur at lower jump frequencies. Quasi-periodic solutions, chaotic sections, and
coexistence of attractors can also be found in oscillating floors, indicating the difficulty or impossibility of orderly
jumping under certain conditions.

This study analyzes the dynamic interaction between a human jumper and a concrete rectangular plate sub-
jected to cyclic vertical jumps. The plate’s behavior is modeled using von Kármán’s nonlinear relations, while the
jumper is represented as a spring-mass-damper (SMD) system with a harmonic force acting on its degree of free-
dom to simulate the propulsion force acting on the human center of mass during jumping. The mechanical system
is governed by a set of piecewise smooth-touch nonlinear differential equations, accounting for the intermittent
contact between the jumper and the plate.
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2 Mathematical Model

The mathematical model considers the jumper as a mass-spring-damper (SMD) oscillator with one degree of
freedom and modal mass mh, an equivalent leg stiffness kh, and a damping coefficient ch. The floor is represented
by a simply supported rectangular plate described by Kirchhoff-Love theory, with displacement fields u, v, and
w, dimensions a and b, thickness h, density ρ, and Young’s modulus E, as studied by [12]. In formulating the
problem, Lagrange’s equation is utilized. It is assumed that the potential energy (U ) and kinetic energy (T ) of the
system are coupled, given by the sum of the jumper’s energy and the plate’s energy, which can be expressed as:

U = UP + UH ; (1)

T = TP + TH ; (2)

where UP and TP are the potential and kinetic energy of the plate, respectively. Similarly, UH and TH are the
potential and kinetic energy of the jumper, respectively.

Therefore, the potential and kinetic energies of the coupled system can be written as:

UP =
1

2

Eh

(1− ν2)

∫ a

0

∫ b

0

(
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2
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2
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12(1− ν2)

∫ a

0
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(
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2
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(3)
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1

2
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∫ a
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0

(
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2
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2
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The damping of the plate is assumed to be of the viscous type and is characterized using the Rayleigh dissipa-
tion function [13]. In a similar manner, the damping terms for the SMD model are also described by the Rayleigh
dissipation function [12]. Consequently, the non-conservative damping forces of the plate FP and the jumper FH

are given by:

F = FP + FH ; (5)

F = ξp, ω1,1,mj

∫ a

0

∫ b

0

(
u̇(x, y, t)2 + v̇(x, y, t)2 + ẇ(x, y, t)2

)
, dy, dx

+ ζh, ωh,mh

(
ẇh− ẇ(x, y, t)|x=x1,y=y1

)2

;

(6)

where ξp, ω1,1, and mj are the viscous damping ratio, first mode vibration frequency, and modal mass of the
plate, respectively. Similarly, ζh, ωh, and mh refer to the damping ratio, natural frequency, and modal mass of the
jumper, respectively.

In this work, a harmonic force is considered acting on the degree of freedom of the SMD model (wh) to
characterize both the compression and propulsion exerted by the jumper during rhythmic jumping movements, as
illustrated in Fig. 2. Additionally, the static weight of the jumper (mh g) against gravity is also considered. Thus,
the work (W ) done by the external forces acting on the SMD model during jumping can be written as:

W = wh(Ah sin(Ω, t)−mh, g) (7)

whereAh and Ω are the amplitude and forcing frequency of the propulsion force, respectively; g is the acceleration
due to gravity, and wh and mh are the displacement and modal mass of the jumper’s center of mass, respectively.

The plate is assumed to be simply supported in the vertical direction and has fixed edges in the axial direction,
leading to the selection of the following displacement fields u(x, y, t), v(x, y, t), and w(x, y, t) in the axial and
transverse directions, which satisfy the boundary conditions.

u(x, y, t) =
∑Mu

m=1

∑Nu

n=1
um,n(t) sin

( mπ x

a

)
sin

(nπ y
b

)
; (8)

v(x, y, t) =
∑Mv
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∑Nv
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vm,n(t) sin

( mπ x

a

)
sin

(nπ y
b

)
; (9)

w(x, y, t) =
∑Mw
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∑Nw
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( mπ x

a

)
sin
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)
, (10)
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Figure 2. Action of the compression and propulsion force on SMD model during rhythmic vertical jumping.

where m and n are the half-wave numbers in the x and y directions, respectively; Mu, Nu, Mv , Nv , Mw, and
Nw are the number of terms used in each displacement field; um,n(t), vm,n(t), and wm,n(t) are the unknown
amplitudes.

Thus, the vector of generalized amplitudes of the coupled plate is given by:

q = [u1,1(t), · · · , uM,N (t), v1,1(t), · · · , vM,N (t), w1,1(t), · · · , wM,N (t), wh]
T
, (11)

where its dimension is given by the sum of the number of degrees of freedom considering the displacement fields
of the plate (Nq = Nu + Nv + Nw) with the degree of freedom of the SMD model. A generic element of the
vector q is referred to as qi, for 1 ≤ i ≤ Ñ , with Ñ = Nq + 1.

In order to derive the set of nonlinear dynamic equations, the Rayleigh-Ritz method is employed in conjunc-
tion with the Hamiltonian principle [13], which is given as follows:

d

dt

(
∂L
∂q̇j

)
− ∂L
∂qj

= Qj ; with Qj =
∂W

∂qj
− ∂F

∂q̇j
, j = 1..Nq; (12)

d
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(
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∂q̇Ñ

)
− ∂L
∂qÑ

= QÑ ; with QÑ =
∂W

∂qÑ
− ∂F

∂q̇Ñ
, Ñ = Nq + 1; (13)

where L represents the Lagrangian function, defined as L = T − U . The equations involve generalized forces
denoted by Qj for 1 ≤ j ≤ Nq and QÑ for Ñ = Nq + 1.

Then, the nonlinear equations of motion of the coupled system shown in (12) and (13) can be written as:

mj q̈j +
∑Nq

i=1
cj,i q̇i +

∑Nq

i=1
kj,i qi +

∑Nq

i,k=1
kj,i,k qiqk +

∑Nq

i,k,l=1
kj,i,k,l qiqkql

= kh

(
qÑψj −

∑Nq

i=1
qiψ

2
i

)
+ ch

(
q̇Ñψj −

∑Nq

i=1
q̇iψ

2
i

)
;

(14)

mh q̈Ñ + ch

(
q̇Ñ −

∑Nq

i=1
q̇i ψi

)
+ kh

(
qÑ −

∑Nq

i=1
qi ψi

)
= Ah sin(Ω t)−mh g; (15)

where the modal mass of the plate is given by mj = 1
4 , ρ, a, b, h; cj,i represents the linear modal damping coeffi-

cient of the plate; kj,i, kj,i,k, and kj,i,k,l are stiffness terms representing linear, quadratic, and cubic nonlinearities
of the plate, respectively; ψi(x1, y1) denotes the modal shape associated with the i-th generalized coordinate of
the plate; qÑ is the generic term of the vector q that refers to the generalized amplitude of the SMD model (wh).

Equations (14) and (15) describe the dynamics of the contact phase, where the jumper is coupled to the
plate. During this phase, the SMD model applies a reaction force to the plate, representing the dynamic interaction
between the human and the structure. In this study, this force is labeled as the Plate Reaction Force (PRF ). To
account for the flight phase, i.e., the time when the jumper loses contact with the plate, PRF is assumed to be
zero, and the only force acting on the SMD model is Gh = mhg,

PRF = −ch
(
q̇Ñ −

∑Ñ−1

i=1
q̇iψi

)
− kh

(
qÑ −

∑Ñ−1

i=1
qiψi

)
. (16)

During the flight phase (i.e., PRF = 0), the plate undergoes damped free vibration, and a decoupled sys-
tem of nonlinear dynamic equilibrium equations can be derived. Thus, adapting (14) by neglecting the human
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biodynamic parameters, the following can be obtained:

mj q̈j +
∑Ñ−1

i=1
cj,i q̇i +

∑Ñ−1

i=1
kj,i qi +

∑Ñ−1

i,k=1
kj,i,k qi qk +

∑Ñ−1

j,i,k,l=1
kj,i,k,l qi qk ql = 0; (17)

Additionally, during the flight phase, the SMD model undergoes free fall motion, and its dynamic equation is
decoupled from the plate, as shown by:

mh q̈Ñ = −Gh. (18)

Assuming α = −Gh/mh, the solutions to Eq. (18) for human displacements and velocities during the flight
phase are expressed as follows:

qÑ (t) =
1

2
αt2 + (q̇Ñ (t0)− αt0) t+

(
qÑ (t0) +

1

2
αt20 − t0q̇Ñ (t0)

)
; (19)

q̇Ñ (t) = αt+ (q̇Ñ (t0)− αt0) . (20)

where the displacement response is modeled as a parabolic function, with t0 denoting the initial time of the flight
phase.

Consequently, two sets of nonlinear equations are derived for the studied problem. The first set, (12) and
(13), describes the coupled interactions between the plate and the SMD during the contact phase. The second set
encompasses the decoupled equations governing the dynamics of the unloaded plate (17) and the free-fall motion
of the SMD model (19) and (20) during the flight phase. These sets are then solved as a piecewise-smooth contact
dynamics problem [11, 14] and are numerically integrated using the Runge-Kutta fourth order method. In this
process, PRF is controlled to accurately determine the touch-down (PRF > 0) and take-off (PRF = 0) events.

3 Numerical Results

The movement of the jumper is studied considering human-induced cyclic vibrations on a concrete rectan-
gular plate. The plate has the following physical and geometrical properties: a = 7.6m, b = 7.6m, h = 0.10m,
E = 23.94GPa, ρ = 2500 kg/m3, ν = 0.20, and ξp = 0.020. These values were chosen such that the natural
frequency of the plate matches the second harmonic of the jumper’s frequency (ω1,1

ωh
= 2). To model the simply

supported plate with fixed edges, 16 degrees of freedom (Nq = 16) for the displacement fields (u, v, and w) in the
expansions of Eq. (8), (9), and (10) were considered, as used in [12]. The SMD model is located at the mid-span
of the plate (x1 = a

2 and y1 = b
2 ), with biodynamic properties given by: mh = 76.64 kg and ωh = 2.479Hz,

resulting in a leg stiffness of kh = 18.6 kN/m [4, 11]. For computational convenience, a nondimensionalization
of variables is introduced, where time is scaled by the decoupled human body frequency ωh, and both the plate
vibration amplitude (w1,1) and the displacement of the jumper’s body center of mass (wh) are divided by parameter
η = g

ω2
h
= 0.04m. To understand the behavior of the system for a weakly damped jumper, a constant value of

ζh = 0.1 has been adopted for the numerical analyses. For the numerical integration of the piecewise-smooth
contact dynamics system of nonlinear ordinary differential equations, a time-direct integration method is used.

(a) (b) (c)

Figure 3. Frequency response curve of the SMD model for increasing forcing frequencies values with ζh = 0.1
and (a) Ah = 1.0Gh, (b) Ah = 1.5Gh and (c) Ah = 2.0Gh.
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Figure 3 displays the frequency-amplitude response for the displacement of the human center of mass for
forcing frequency values ranging from Ω = 0.4ωh to Ω = 1.2ωh, corresponding to values from 1.0 to 3.0
Hz. For the propulsion force amplitudes, the following values are investigated: Ah = 1.0Gh, Ah = 1.50Gh,
and Ah = 2.0Gh, with Gh = mh g. Figure 5a depicts that for Ah = 1.0, Gh, the jumper exhibits softening
behavior with two 1T periodic jumping strategies when lower forcing frequency values are chosen: one at low
amplitude and another at high amplitude. This indicates that the SMD model can converge to either bobbing or
jumping behavior in a steady state, depending on the initial conditions, which is consistent with the experimental
findings of [4] and [2]. Increasing the amplitude of the excitatory force, the low-amplitude solution transitions to
a periodic 2T solution and subsequently to a 4T solution at the same frequency point, as illustrated in Fig.5b and
5c, respectively. At higher excitation frequencies, windows of chaotic solutions can be observed, indicating the
difficulty of jumping periodically on the floor. This transition of periodicity is confirmed by the phase portraits and
Poincaré maps shown in Fig. 4.

(a) (b) (c)

(d) (e)

Figure 4. Phase portraits and Poincaré maps of human response with ζh = 0.1 for (a) Ω = 0.60ωh and
Ah = 1.00Gh (b) Ω = 0.60ωh and Ah = 1.5Gh (c) Ω = 0.60ωh and Ah = 2.00Gh (d) Ω = 1.1ωh and
Ah = 1.50Gh (e) Ω = 1.00ωh and Ah = 2.00Gh

The dynamic response of the plate under human excitation was also investigated. Obtained results showed
that, even with the decoupling during jumps, and considering the evaluated mass and frequency ratio between the
structure and the jumper, the SMD model significantly influenced the mechanical behavior of the plate, acting as a
tuned mass damper (TMD). This was evidenced by the splitting of the resonance peak into two, due to the coupling
of the SMD model’s vibration modes with those of the structure, creating two new resonance frequencies close to
the original one and redistributing the vibrational energy between them, as shown in Fig. 5a. As the propulsion
force (Ah) exerted on the plate increases, more resonance peaks emerge due to nonlinear interactions and more
complex dynamic coupling, as seen in Figs. 5b and 5c.

4 Concluding Remarks

In this work the dynamic interaction between a human jumper and a concrete rectangular plate under cyclic
vertical jumps is analyzed. The mechanical system is described by a set of piecewise smooth-touch nonlinear
differential equations, allowing for the consideration of contact loss between the jumper and the plate during
jumps. The analyses demonstrated that the jumper exhibits complex dynamics, including periodic and chaotic
responses, depending on parameter combinations for the system. The results highlight that the SMD model also
can affect the mechanical behavior of the plate, due to the coupling of the jumper’s vibration modes with the
structure’s, creating new resonance frequencies and redistributing vibrational energy.
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(a) (b) (c)

Figure 5. Frequency response curve of the plate for increasing forcing frequencies values with ζh = 0.1 and (a)
Ah = 1.0Gh, (b) Ah = 1.5Gh and (c) Ah = 2.0Gh.
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[5] Y. El Asri, M. Couchaux, M. Hjiaj, and M. Lukić. Spectral modelling approach for crowd-rhythmic activities
performed on steel-concrete composite floors. Engineering Structures, vol. 299, pp. 117066, 2024.
[6] M. S. Pfeil, W. D. Varela, and da N. d. P. A. Costa. Experimental calibration of a one degree of freedom
biodynamic model to simulate human walking-structure interaction. Engineering Structures, vol. 262, pp. 114330,
2022.
[7] C. Gaspar, E. Caetano, C. Moutinho, and J. G. S. Silva. Active human-structure interaction during jumping on
floors. Structural Control and Health Monitoring, 2019.
[8] S. Yao, J. Wright, A. Pavic, and P. Reynolds. Experimental study of human-induced dynamic forces due to
jumping on a perceptibly moving structure. Journal of Sound and Vibration, vol. 296, n. 1-2, pp. 150–165, 2006.
[9] R. Harrison, S. Yao, J. Wright, A. Pavic, and P. Reynolds. Human jumping and bobbing forces on flexible
structures: effect of structural properties. Journal of engineering mechanics, vol. 134, n. 8, pp. 663–675, 2008.
[10] V. Racic, J. Brownjohn, and A. Pavic. Reproduction and application of human bouncing and jumping forces
from visual marker data. Journal of Sound and Vibration, vol. 329, n. 16, pp. 3397–3416, 2010.
[11] R. E. White, N. A. Alexander, J. H. Macdonald, and A. R. Champneys. Parametric exploration of a simple
model of human jumping on an oscillating structure. Journal of Sound and Vibration, vol. 509, pp. 116227, 2021b.
[12] P. V. I. Dias and Z. J. G. N. Del Prado. Human-structure interaction during jumping on rectangular plates. In
XLIII Ibero-Latin American Congress on Computational Methods in Engineering, volume 4, 2022.
[13] M. Amabili. Nonlinear vibrations and stability of shells and plates. Cambridge University Press, 2008.
[14] M. Bernardo, C. Budd, A. R. Champneys, and P. Kowalczyk. Piecewise-smooth dynamical systems: theory
and applications, volume 163. Springer Science & Business Media, 2008.

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Maceió, Alagoas, November 11-14, 2024


	Introduction
	Mathematical Model
	Numerical Results
	Concluding Remarks

