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Abstract. Material media representation by damage models presents difficulties in the parametrization process.
The damage laws are generally written as functions of variables without physical meaning. This lack of connec-
tion between the evolution of degradation and the properties of materials requires a diversity of tests to numerically
reproduce results obtained experimentally, which makes such a process slow, costly, and subjective. Based on this
context, a constitutive model capable of describing the material response with damage evolution laws defined in
terms of material parameters obtained from experimental tests is proposed in this paper to overcome parametriza-
tion adversities. Such a model is focused on reproducing the bimodular behavior of quasi-brittle materials, such as
concrete, thar respond differently to tension and compression efforts. While these materials have a significant resis-
tance under compression, they manifest cracks when subjected to tension, collapsing due to fracturing. The current
model presents a nonlocal character as a regularization technique to avoid strain localization phenomena. Finally,
numerical simulations are conducted to verify the constitutive model performance and to validate the possibility of
parameterizing computation analyses using exclusively physical parameters.

Keywords: Nonlocal bimodular damage model, Constitutive laws, Physically nonlinear analysis, Concrete struc-
tures.

1 Introduction

Concrete is one of the most widespread materials applied in the construction industry. Models capable of
describing this material behavior are essential to developing safe and economically viable projects. A particular
property of concrete is the bi-modularity, related to the different responses under tension and compression loadings.

In the literatura, many different models have been proposed to reproduce concrete behavior. The Continuum
Damage Mechanics (CDM) enables the formulation of constitutive models based on phenomenological aspects of
material deterioration when subject to loading. For instance, the CDM defines a damage variable to compute the
material elastic modulus degradation, which represents the smeared cracking process that occurs in quasi-brittle
material such as concrete.

The isotropic damage models [1–7] are formulated considering a scalar damage variable responsible for
computing a general degradation to all material directions. A disadvantage of these models is the absence of
representation of concrete anisotropic deterioration, which can be overcome with tensorial damage variables and
more complex constitutive models [1, 8, 9].

To embrace simplicity and represent the asymmetric concrete behavior in compression and tension, isotropic
models can be applied with a single damage variable calculating degradation by tension [10–12]. An alternative
is to admit two damage variables, one related to tension and the other to compression deterioration, such as the
model of Mazars [13].

Considering this context, recent damage models have been proposed to enhance the performance of classi-
cal isotropic models in reproducing concrete behavior. Ahmed et al. [14] proposed a local and non-local model
based on stress decomposition into shear stress and uniaxial tension/compression stress. Caetano and Penna [15]
extended the models of Mazars [13], Lemaitre and Chaboche [11], and de Vree et al. [12] to better represent the
concrete responses in tension and compression. A limitation of these models is the difficulty correlating the dam-
age evolution laws with mechanical material properties. These laws generally require constants with no physical
meaning, an obstacle to material parametrization.

Based on the above, this study proposes a new isotropic bi-modular damage model. The particularity of this
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model is the adoption of principal strains to quantify degradation, which allows the calculus of the damage variable
from stress-strain relations. The damage laws are now defined based on the material constitutive laws that have
the material mechanical properties as variables, simplifying the parametrization process. Thus, this model enables
numerical analyses using only data extracted directly from experimental tests.

2 Bimodular Principal Strains (BPS) model

The BPS model considers an isotropic elastic degradation, and the stress-strain relation is given by:

σij = (1−D)E0
ijklεkl. (1)

The damage is established based on an equivalent strain defined from the principal strains. The equivalent
strain assumes the positive or negative principal strain according to the dominant state of tension or compression,
respectively. The higher value is adopted when all the strain components are positive or negative.

Additionally, the dominant state of tension or compression is calculated from the first invariant (I1) of the
strain tensor:

I1 ≥ 0 ∴ tension dominant state;
I1 < 0 ∴ compression dominant state.

From these definitions, the equivalent strain is obtained.

• If I1 ≥ 0 (tension dominant state):
– The strain tensor is ε = ⟨εp⟩+;

where only positive principal strain components are considered. In case of negative components, they
are replaced by zero.

– While the equivalent strain is ε̃+ = max(ε̃1, ε̃2, ε̃3).

• If I1 < 0 (compression dominant state):
– The strain tensor is ε = ⟨εn⟩−;

where only negative principal strain components are considered. In case of positive components, they
are replaced by zero.

– While the equivalent strain is ε̃− = min(ε̃1, ε̃2, ε̃3).

Since the equivalent strain is a principal strain component, damage evolution laws directly associated with
stress-strain relations can be admitted. Such relations are a function of material parameters obtained from experi-
mental tests. Examples of stress-strain relations to concrete are the laws proposed by Carreira and Chu [16, 17] to
compression and tension (Eq. 2) and by Boone and Ingraffea [18] to tension (Eq. 3).

σi = fi
k
(

ε
εi

)
k − 1 +

(
ε
εi

)k
, where k =

1

1− fi
εi·E0

with i = t, c. (2)

Where σi is the compression or tension stress, fi is the compression or tensile strength limit, ε is the current
strain, εi is the strain related to the elastic limit, h is the characteristic length, E0 is the elastic modulus, and i = c
for compression and i = t for tension.

σ = fte
−k(ε−εt), with k =

hft
Gf

. (3)

Where σ is the current tension, ft is the tensile strength, ε is the current strain, εt is the strain related to the
elastic limit, h is the characteristic length, and Gf is the fracture energy. This expression (Eq. 3) is restricted to
the post-peak branch. Before the strength peak, the elastic relation σ = E0ε governs the stress-strain behavior.

Besides, the loading function of the proposed model is written as

f(ε, εc, εt) = ε̃+ κ(ε̃), (4)
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where κ(ε̃) is the historical variable, i.e., the maximum value of ε̃ during the numerical analysis. This variable is
initially set as the strain value related to the elastic limit.

The equivalent strain ε̃ can assume positive or negative values. If ε̃ is positive, κ must be obtained according
to tension, while the historical parameter is obtained from compression for a negative value of ε̃.

In the case of a loading inversion, when the equivalent strain is subject to a signal change, the loading
conditions require adjustments to represent the regime properly.

The loading regime must attend Karush-Kuhn-Tucker conditions

f ≤ 0 ; κ̇ ≥ 0. (5)

and the complementary consistency conditions, given as:

fκ̇ ≤ 0 ; ḟ κ̇ ≥ 0. (6)

Once the loading regime is known (loading, unloading, or reloading), the damage variable is computed as
a function of ε̃, and the material degradation stiffness is calculated by the tangent operator. Carol et al. [19]
established this operator as

Et
ijkl = Es

ijkl +
1

H
mijnkl, (7)

where:
Es

ijkl are the components of the secant constitutive tensor, given by Es
ijkl = (1−D)E0

ijkl;

E0
ijkl are the components of the elastic constitutive tensor;

D is the scalar damage variable;
nkl are the components of the tensor with the loading function derivation in relation to strains: nkl =

∂f
∂εkl

;
mij are the components of the degradation direction tensor, obtained from de generalized degradation rule
mij = Mijklεkl, where:

Mijkl =
∂Es

ijkl

∂D M , with
∂Es

ijkl

∂D = −E0
ijkl and M = 1 for isotropic models.

Then, considering stress-strain laws written in function of material physical parameters as [16, 17] and [18]
and the correlation between the secant elastic modulus and the damage variable

(
D = 1− Es

E0

)
, it is possible to

associate the stress-strain response with the damage evolution, as shown in Fig. 1.

2.1 Nonlocal approach

The current model is extended to a nonlocal approach to avoid strain localization phenomena. This regular-
ization technique consists of a definition of a nonlocal variable [2]. For the proposed model, the historical value of
the equivalent strains is defined as the nonlocal variable (ε̃nl), given by:

ε̃nl =
1

Vr(x)

∫
V

α(s− x)ε̃(s)dV =

∫
V

α′(x, s)ε̃(s)dV, (8)

where ε̃ is the local equivalent strain; Vr(x) =
∫
V
α(s−x)dV represents the volume of the revolution solid related

to the distribution function α; x is the coordinates vector of the point in analysis; s is the coordinates vector of the
points into the nonlocal domain; and α′(x, s) = α(s−x)

Vr(x)
.

The weight function (α) can assume different shapes. In the present work, it is adopted the Gaussian function
distribution, is written as

α(s,x) = e−(k∥s−x∥/r)2 , (9)

where r is the nonlocal radius, defining the size of the nonlocal domain; k is a constant that determines the shape
of the function.

3 Numerical simulations

Numerical simulations via the finite element method are present to evaluate the proposed model character-
istics. The analyses consist of a three-point bending test, resulting in the equilibrium path of the structure. The
numerical results are compared with experimental data available in the literature.
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Figure 1. Stress-strain laws and damage evolution.

3.1 Three-point bending test of Garcı́a-Álvarez et al. [20]

Garcı́a-Álvarez et al. [20] have performed experimental bending tests of notched concrete beams of different
sizes - small beam (SB), medium beam (MB), and large beam (LB). The geometry and boundary conditions of the
beams are shown in Fig. 2. The dimension d assumes different values in each size (d = 80, 160, and 320 mm).

The incremental-iterative process was conducted using the direct displacement control method [21], monitor-
ing the vertical direction of the node in the notch center. The reference load was P = 1000 N, with an incremental
load factor of 1 N. The meshes adopted in each beam size are illustrated in Fig. 3.

The material parameters obtained from [20] are: Young’s modulus E = 33800 MPa; Poisson ratio ν = 0.2;
fracture energy Gf = 0.08 N/mm; tensile strength ft = 3.5 MPa. The compression strength was estimated
according to the relation fctm = 0.3f

2/3
ck , with fctm = ft. The strain limits were admitted as εc = 0.002 for

compression and εt = 2.0 × 10−4 for tension. Since the characteristic length of concrete is between 2.7 to 3.0
times the maximum aggregate size [22], which in the experimental tests was 12 mm, the characteristic length (h)
adopted is 36 mm.

P

a

d

2.5 d
3.125 d

notch thickness: 3 mm 

beam thickness: 50 mm 

(a)  Small beam(a)  Small beam - SB

(b)  Medium beam - MB (c)  Large beam - LB

Figure 2. Three-point bending specimen.
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Figure 3. Finite element meshes adopted for each beam.

The simulations were performed using Carreira and Chu [16, 17] to compression and tension (CC) or Carreira
and Chu [16, 17] to compression and Boone and Ingraffea [18] to tension (CB).

The nonlocal approach was established from a Gaussian weight function with a nonlocal radius of r = 36
mm and the constant k = 6.0. This constant regulates the spread of the distribution function.

The results are illustrated in Fig. 4. Comparing the experimental spectrum with the numerical curves, a good
representation of the experiments is verified for all beams. The load peak was achieved with more precision by the
CB laws, while the CC law better approximated the softening branch. In bending tests, the tension state is the main
responsible for the degradation process, so the pronounced softening presented by the CB laws is associated with
the exponential behavior of Boone and Ingraffea [18] law, as indicated in Eq. 3. On the other hand, the polynomial
law by Carreira and Chu [16, 17] showed a better performance in reproducing the smooth softening under tension.
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Figure 4. Load versus Crack Mouth Opening Displacement - CMOD.

4 Final remarks

Finally, the main conclusion of the present study can be summarized:

i The proposed BPS model was capable of describing concrete behavior considering material physical pa-
rameters to describe degradation;
ii The BPS model was validated from comparison with experimental data of the three-point bending test of
Garcı́a-Álvarez et al. [20];
iii The nonlocal approach was efficient in avoiding localization phenomena;
iv Numerical simulations of different structural models must be performed with the BPS model to consoli-
date model characteristics and limitations.
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