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Abstract. The behavior of structural concrete is usually represented by considering the homogeneous
material media and its macroscopic properties. The problem can be represented in more realistic models
considering the material as a heterogeneous multiphase media. In representing heterogeneity, either
a direct or indirect description of the phases can be considered. The direct approach considers the
geometric description of the phases in the discretization of the model. In the indirect approach, phases
are represented by homogenizing their physical properties or by the random distribution of points in
the domain with material parameters corresponding to each phase. This work proposes a model for
representing the heterogeneity of concrete, aiming at the physically nonlinear analysis of structures. Two
phases will be considered to describe the heterogeneity: the cement matrix and the coarse aggregates,
which will be incorporated into the discrete model using a hybrid method, which combines characteristics
of direct and indirect methods. For material media degradation, a nonlocal damage model will be adopted
with appropriate constitutive laws for each constituent material. Finally, numerical simulations will be
presented to evaluate the model’s characteristics.
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1 Introduction

Concrete is a composite material formed by a cement matrix (cement and water), coarse aggregates,
fine aggregates, and porosity. Due to this nature, it can be analyzed at different scales of observation,
such as microscale, mesoscale, macroscale, or even in a multiscale analysis. The behavior of a material at
a particular scale can be explained in terms of the structure it presents at smaller observation scales, as
stated by van Mier [1]. Concrete can be satisfactorily studied from the mesoscale once at the macroscale
it does not rigorously establish cause-effect relationships between the physical properties of heterogeneous
materials and their mechanical response, as highlighted by López et al. [2].

The treatment of heterogeneity in numerical modeling is traditionally approached by two methodolo-
gies, as described by Schlangen and van Mier [3]. The first strategy is a direct representation consisting of
the geometric description of the phases in the discrete model, as performed by several authors [4, 5]. The
second approach is considered an indirect method of heterogeneity representation [6–9], which distributes
the physical properties of materials among the internal points of the model.

In the numerical simulation of concrete heterogeneity, different approaches are considered in the
constitutive relations of materials. One possibility is modeling based on damage mechanics, where the
degradation of its elastic properties phenomenologically represents the concrete fracturing process. Ac-
cording to Kachanov [10], damage models relate an integrity variable that ranges between 0 and 1, where
0 indicates that the material fails due to brittle rupture and 1 indicates that the material has no dama-
ge. Several studies have explored models based on damage mechanics, notably the work of Mazars [11],
Lemaitre and Chaboche [12], and de Vree et al. [13], which present different deformation measures, called
equivalent deformation, to obtain the evolution of the damage.

Along with damage models, regularization strategies are essential to prevent numerically induced
strain localization issues. One possibility is the nonlocal approach, based on the integral formulation
[14, 15] or gradients [16, 17], but both methodologies are congruent, as demonstrated by Magri et al. [18].

This work aims to simulate a concrete structure with a heterogeneous material description. It con-
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siders a hybrid methodology, which combines aspects of the direct and indirect methods, in representing
the phases. For this purpose, a nonlocal damage model is adopted for the constitutive relations of the
material. Finally, numerical simulations will be conducted to evaluate the performance of the model.

2 Theoretical Foundation

2.1 Standard Isotropic Damage Model

An isotropic damage model is described by the constitutive relationship given by:

σij = (1−D)E0
ijklεkl , (1)

where σij are the components of the stress tensor, εkl are the components of the strain tensor, and D is
the damage variable, which can assume values   between 0 and 1 to indicate whether the material is intact
(D = 0) or completely degraded (D = 1).

The loading function in the damage model relates the evolution of stresses and deformations with
resistance criteria and historical variables of the model. In general, the deformation-based loading function
is given by:

F (ε, κ(D)) = ε̃− κ(D) , (2)

where ε̃ is the equivalent strain and κ(D) is a historical variable of equivalent strain as a function of
damage given by:

κ =

{
κ0, if D = 0

max [ε̃, κ(D)] , if D > 0 ,
(3)

where κ0 is the initial limit value of elastic deformation. The loading function and the rate of the historical
variable (κ̇) must satisfy the Kuhn-Tucker conditions for loading and unloading, given by:

F ≤ 0, κ̇ ≥ 0 e Fκ̇ = 0 . (4)

The model can be developed according to the formulation presented by Carol et al. [19]. Thus, the
equation eq. (1) is taken and differentiated in time, resulting in:

σ̇ij = Et
ijklε̇kl , (5)

where the upper point indicates a variation in pseudo-time and Et
ijkl is given by:

Et
ijkl = Eijkl −

∂D

∂ε̃

∂ε̃

∂εij
E0

klpqεpq . (6)

For the evolution of the damage, the exponential law will be adopted, presented by de Borst and
Gutiérrez [16], which is given by:

D(ε̃) = 1− κ0

ε̃

[
1− α+ αe−β(ε̃−κ0)

]
, (7)
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where ε̃ is the equivalent deformation measure, κ0 is the equivalent strain value from which the damage
process begins, α is the maximum allowable damage value for the material, β is the intensity of the
damage evolution.

In this work, the equivalent deformation proposed by de Vree et al. [13] was adopted, which is defined
by:

ε̃ =
kr − 1

2kr (1− ν)
Iε1 +

1

2kr

√
(kr − 1)

2

(1− 2ν)
2 (Iε1)

2
+

12kr

(1 + ν)
2 J

ε
2 , (8)

where kr = fc/ft, where fc is the compressive strength of the material and ft is the tensile strength of
the material, Iε1 is the first invariant of the strain tensor, and Jε

2 is the second invariant of the deviator
strain tensor.

2.2 Nonlocal Model

Numerically induced localization is a recurring problem in damage models based on elastic degra-
dation. In this sense, the abovementioned problem can be addressed using a nonlocal strategy. Among
many other authors, Jirásek [15] presents the basis of the integral formulation in which, in general, the
approach consists of replacing a given variable at a point with its nonlocal value obtained by the weighted
average at the points in its neighborhood, as presented in:

f̄(r) =
1

Vr

∫
V

w(||r − s||)f(s)dV , (9)

where w(||r − s||) is the weight function that depends on the Euclidean distance ||r − s|| between the
point r , where the local variable will be replaced by its nonlocal value, and the point s being analyzed in
the weighting. The local magnitude associated with a point s is given by f(s), while f̄(r) is the nonlocal
quantity associated with the point r . The domain of influence of the point r is V , given by:

Vr =

∫
V

w(||r − s||)dV , (10)

that is, an integral of the weight function in the domain of influence of the point r . In this work, the
Gaussian weight function was adopted given by:

w(||r − s||) = exp

[
−
(
k||r − s||

`

)2
]
, (11)

where k is a parameter that defines the shape of the curve and ` is the nonlocal radius that defines the
size of the domain Vr.

Considering the heterogeneity, nonlocal models with phase division must be used, as presented by
Fish et al. [20], Magri et al. [18] and Lenz and Mahnken [21]. Therefore, in this work, only points with
the same phase were considered for calculating the nonlocal variable. Therefore, the weight function was
redefined to:

w =

 w, if s ∈ Vrη

0 otherwise ,
(12)

where Vrη are the within the domain V , with phase η, which is the same phase as the analysis point r .
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2.3 Heterogeneity Representation

To represent heterogeneity a hybrid methodology was adopted. This strategy distributes the material
properties at the integration points similar to the indirect method, however the integration points will
spatially represent the aggregates like the direct method. This way, the aggregate is represented without
it being directly discretized in the mesh of elements. This hybrid approach is similar to the unaligned
mesh proposal presented by Zohdi and Wriggers [22] and Zohdi [23], in which the finite elements of the
mesh may internally present a material discontinuity.

A cumulative distribution function for particle size must be adopted in numerical models of concrete
heterogeneity. The most traditional in the literature, and used in this work, is proposed by Fuller and
Thompson [24], given by:

F Fuller(d) =

(
d

dMax

)nFuller

. (13)

where nFuller is the Fuller number that varies from 0.45 and 0.7 according to Wriggers and Moftah [25]
and modifies the accumulated value in the particle size distribution curve, dMax is the diameter maximum
of the aggregate and d is the value of the diameter of the aggregate considered in the function.

3 Numerical Simulation

A numerical test on a L-shaped panel of Winkler et al. [26] was conducted to evaluate the numerical
response of the model with a heterogeneous medium using the hybrid method. An isotropic damage
model was used with an exponential law given by eq. (7) and with an equivalent deformation measure
proposed by de Vree et al. [13].

The data from the experiment performed by Winkler et al. [26] are for macroscopic homogeneous
concrete, and there is no specification of the properties of the aggregates. Therefore, the properties
presented by Winkler et al. [26] are the modulus of elasticity E0 = 24469 N/mm2, Poisson’s coefficient
ν = 0.18, tensile strength of the material ft = 2.7 MPa, fracture energy Gf = 0.065 N/mm.

There are no further details about the mesoscopic parameters, and as reported by Sun [27], the
characteristics of the mesostructure are difficult to obtain, and several tests present in the literature [28–
30], focus only on the parameters of concrete. Therefore, the homogeneous material was parameterized
and subsequently, to describe the heterogeneity, the phase parameters in the heterogeneous modeling
were adjusted based on the properties of the homogeneous material.

The parameterization was carried out considering constitutive laws defined with the parameters of
the experimental test and comparing them with the parameters used in the damage model. Thus, for
the homogeneous material we have the following damage law properties: E0 = 24469 N/mm2, ν = 0.18,
kr = 10, α = 0.999, β = 950, κ0 = 1.35× 10−4.

For the data used in the heterogeneous model, eq. (14), used by Eckardt and Könke [31], was used
to find the values   of the elastic modulus of each material.

1

EC
=

φM

EM
+

φA

EA
, (14)

where EC is the modulus of elasticity of the homogeneous concrete, EM is the modulus of elasticity of
the cement matrix, EA is the modulus of elasticity of the aggregate, φM is the percentage of mortar in
the concrete and φA is the percentage of aggregate in the concrete.

Considering that the value of the elastic modulus of the mortar is   lower, as highlighted by Eckardt
and Könke [31], for a proportion of 30% aggregate and 70% cement matrix, the values   of EM = 23000
N/mm2, and EA = 28750 N/mm2.

The parameters for the cement matrix are adjusted, taking the macroscopic properties of the concrete
as a reference, similar to what was done for the elastic modulus. Thus, the data for the cement matrix
adopted were: αM = 0.999, βM = 760 and κM

0 = 1.28×10−4 . Additionally, the aggregate parameters are
adjusted with the aim of having a linear elastic response, causing the damage to propagate preferentially
in the mortar. This methodology is commonly applied by several authors and is reported in the literature
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review developed by Thilakarathna et al. [32]. Therefore, the properties for the aggregates adopted were:
αA = 0.999, βA = 20000 and κA

0 = 3.25× 10−4 .
The geometric data from the numerical test of the L-shaped panel, the adopted mesh, and the

heterogeneity representation are presented in Fig. 1. The mesh is made up of CST (Constant Strain
Triangle) elements, the integration points in gray represent the mortar, while those in red represent the
aggregates. The aggregates size ranges from 4 mm to 8 mm, according to the accumulated distribution
function exposed in eq. (13) with nfuller = 0.5.
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Figure 1. L-shaped panel. (a) Geometry of the model with measurements in millimeter; (b) T3 mesh
(h = 25 mm in the coarse region and h = 2.5 mm in the fine region); (c) Representation of heterogeneity
in the model

In the solution process, the direct displacement control method was adopted with an increment
4 × 10−3 at the point of force application. Two Load x Displacement curves for the force application
point are presented in Fig. 2a. In both curves, the nonlocal model with phase division was used, with the
Gaussian weight function, considering a nonlocal radius of 28 mm and each curve has a value of k. The
size of the non-local radius is based on a value close to 3 times the maximum diameter, as highlighted
by Bažant and Pijaudier-Cabot [33]. The experimental result obtained by Winkler et al. [26] is also
illustrated together with the responses from the numerical simulations. In Fig. 2b the damage is shown
considering k = 1.5, while in Fig. 2c the damage scale is shown.
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Figure 2. (a) Load-displacement curves for heterogeneous simulations.(b) Contour plots for damage in
L-Shaped Panel. (c) Damage scale.

Both results are partially within the experimental curve, present softening behavior similar to ex-
pected, and have a peak load relatively close to the experimental one. The phase parameterization must
be developed and improved so that the heterogeneous modeling corresponds with the experiment. How-
ever, the results obtained already show a very reliable representation of the Winkler et al. [26] test. It is
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observed that a higher value of k results in a curve with a lower peak load. The contour plots for damage
show consistency with the crack path observed in the literature but present a spread degradation zone
due to the nonlocal character of the modeling.

4 Final Remarks

In this work, numerical simulations with a heterogeneous description of concrete were conducted.
A hybrid methodology was adopted in the model conception, using integration points for spatial re-
presentation of heterogeneity, and a nonlocal damage model with phase division was employed due to
the heterogeneity. During the study, it was observed that the literature contains data on homogeneous
concrete. However, more studies are needed on the physical properties of the phases that compose the
concrete. Therefore, a parameterization must be developed to obtain the input data when performing
numerical simulations with heterogeneity and comparing them with experimental results. The param-
eterization in this study obtained results that were close to the experimental one, but further studies
should be conducted to improve it.
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