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Abstract. Steel deck slabs are an efficient construction system thanks to the deck’s double role of molding the
concrete in the builiding phase and resisting to flexural loads within its lifespan. Due to the high costs and semiem-
pirical nature of experimental programs, it is important to formulate a numerical model that accurately describes
the behavior of these structures. This article proposes a simple and computationally lightweight numerical model
employing a finite element method based on positions, which naturally allows for geometrical nonlinear analysis of
structures. A prismatic element is developed to represent the concrete matrix, and active face immersed elements
are included to represent the steel deck. The results are expected to conform with previous experimental results
from literature under the limitations of the employed simplifications.
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1 Introduction

Concrete and steel are one of the most popular material combinations for construction, thanks to concrete’s
low cost and high compressive strength and steel’s high tensile strength and lightweightness. Reinforced concrete
structures aside, this pair can be seen in steel framed buildings in the form of steel deck slabs. In these, concrete is
poured over a continuous steel deck placed between two spans to form a composite one-way slab. The deck func-
tions both as formwork for the poured concrete during construction and as flexural reinforcement in the lifespan of
the structure.

To understand the behavior and performance of steel deck slabs, many experimental tests have been performed
and reported in literature, such as [1], [2]. Due to the costly nature of experimental research, it is of interest to
formulate numerical models to reproduce and predict the behavior of these structures, as done by [3], [4].

The present work proposes a simplified numerical modeling of steel deck slabs in which slipping is not
considered. While it has been demonstrated that the slipping is an important factor to consider in these systems
when physical nonlinearities start to become prominent ([1], [2], [4]), it is valuable to be able to numerically
reproduce the linear behavior of these systems with less computationally costly simulations.

The modeling is done via finite element method (FEM) based on positions, which is an approach initially
proposed by Bonet et al. [5] and independently by Coda and Greco [6] that naturally encompasses geometrical
nonlinearity. Triangular base prismatic elements work as the concrete matrix and the steel decking is represented
by active face immersed elements proposed by Carrazedo et al. [7]. The procedure involves first calculating
rectangular bidimensional elements representing the steel. Their stiffness is then made to contribute to the faces
of the prismatic matrix elements where the steel decking is located. This way, no new degrees of freedom are
effectively added to the problem, considerably reducing the computational cost of simulations.

2 FEM based on positions

The main principle of the FEM based on positions is to use coordinates rather than displacements as variables.
To start, an element is described as shown in Fig. 1 in its initial configuration B0 with coordinates xi and in its
current configuration B1 with coordinates yi, with i = 1, 2 for 2D spaces or i = 1, 2, 3 for 3D spaces. A third
adimensional description in coordinates ξi is made to facilitate numerical calculations and to help transit between
the two real configurations.
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Figure 1. Element mapping

The change of configuration function f⃗ is one that takes the coordinates of the body from its initial to its
current configuration. It can be split into a composition of the functions f⃗0 and f⃗1 which take an adimensional
element to the body’s initial and final configurations respectively. Note that these functions are effectively the body
coordinates themselves, that is, f0

i (ξj) = xi and f1
i (ξj) = yi.

The gradient of f⃗ , defined as A and often denoted deformation gradient, can similarly be described by a
combination of A0 and A1 which are the gradients of f⃗0 and f⃗1 respectively. Those entities are defined by

A0
ij =

∂xi

∂ξj
, (1)

A1
ij =

∂yi
∂ξj

. (2)

With these, A can be written as

A = (A0)−1A1. (3)

The deformation gradient can then be used to work out the Green-Lagrange strain, which is defined by

L =
1

2
(ATA− I), (4)

where I is the identity tensor.
To work out stresses from strains, the Saint-Venant-Kirchhoff (SVK) constitutive relation is adopted. It is

written as a linear relation between the Green-Lagrange strain and its energetically conjugate Piola-Kirchhoff
stress. It follows that the strain energy per unit of volume in the SVK model is defined as

ue =
1

2
L : C : L. (5)

The Piola-Kirchhoff stress can then be written as

S =
∂ue

∂L
= C : L, (6)

where C is the constitutive fourth-order tensor that encompasses the material properties. For isotropic materials,
this tensor can be written in Voigt notation as
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=

E

(1 + ν)(1− 2ν)


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. (7)

With those quantities defined, the total potential energy of the element can be described in two parts. The
energy related to nodal applied forces is given by

P = −F⃗ · Y⃗ , (8)
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where F⃗ holds the values of the applied forces and Y⃗ contains the node positions of the body in its current
configuration. It is important to note that in this formulation the applied forces are considered to be conservative,
that is, independent of the current position.

The strain energy of the body is given by

U =

∫
V0

ue dV. (9)

With eq. (5), the derivative of the strain energy with relation to current position Y⃗ can be worked out as

∂U
∂Y⃗

=

∫
V0

∂ue

∂Y⃗
dV =

∫
V0

∂ue

∂L
:
∂L

∂Y⃗
dV =

∫
V0

S :
∂L

∂Y⃗
dV. (10)

The total potential energy can finally be written as

Π = P+ U. (11)

In the equilibrium position, it is known by principle that the total energy is stationary. Thus, if the nodal
position is chosen as the main variable, the total energy variation in the equilibrium position can be written as

δΠ =
∂Π

∂Y⃗
δY⃗ =

∂P
∂Y⃗

δY⃗ +
∂U
∂Y⃗

δY⃗ = 0⃗ (12)

Since δY⃗ can be chosen arbitrarily, it follows that δΠ/δY⃗ must be zero. From that and eqs. (8) and (10), the
equilibrium of external and internal forces is worked out to be

−F⃗ +

∫
V0

S :
∂L

∂Y⃗
dV = 0⃗. (13)

In the system of equations above, F⃗ is given and L and S are nonlinearly dependent to the vector of unknowns
Y⃗ . An approximate solution can be found via an iteractive procedure called the Newton-Raphson method. It begins
by assigning to eq. (13) trial position Y⃗ ∗ which can initially be made equal to the initial node positions X⃗ . As Y⃗ ∗

is not the actual solution, eq. (13) is not equal to zero but to a vector g⃗, denoted mechanical unbalanced force, as
seen below:

g⃗(Y⃗ ∗) = −F⃗ +

∫
V0

S(Y⃗ ∗) :
∂L

∂Y⃗

∣∣∣
Y⃗ ∗

dV. (14)

This vector is then expanded around the equilibrium position where it should be equal to zero. By ignoring
higher order terms, the following equality is imposed:

g⃗(Y⃗ ) = g⃗(Y⃗ ∗) +
∂g⃗

∂Y⃗

∣∣∣
Y⃗ ∗

∆⃗Y = 0⃗ (15)

In the equation above, ∂g⃗/∂Y⃗ is called Hessian matrix and ∆⃗Y is the position correction, which is the vector
of unknowns of a now linear system of equations. The Hessian matrix is explicitly

H =
∂g⃗

∂Y⃗
=

∫
V0

(
∂S

∂Y⃗
:
∂L

∂Y⃗
+ S :

∂2L

∂Y⃗ ⊗ ∂Y⃗

)
dV (16)

Once the linear system is solved for ∆⃗Y , the trial position is updated in the following way:

Y⃗ ∗ ← Y⃗ ∗ + ∆⃗Y (17)

The process is then repeated until ∆⃗Y is sufficiently small, which implies Y⃗ ∗ is sufficiently close to Y⃗ . This
is generally determined by setting an upper threshold for the value of ||∆Y⃗ ||/||X⃗||.

2.1 Triangular base prismatic element for the concrete matrix

Tridimensional, prismatic elements are picked to represent the concrete matrix. The base of the prism, de-
scribed in the plane defined by directions ξ1, ξ2, is chosen to be triangular as that shape easily conforms to most
cross section geometries. The degrees of approximation of the triangular base as well as the height are chosen to
be cubic, which is achieved by distributing 10 nodes across the base and 4 groups of nodes across the height as
shown in Fig. 2.
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ξ3

ξ2

ξ1

Figure 2. Prismatic element node distribution

Cubic complete polynomials are worked out in ξ1, ξ2 as the shape functions for the base and multiplied by
third-order Lagrange polynomials in ξ3 for a full description of the tridimensional geometry. The initial and current
body coordinates can thus be expressed as

xi = ϕk(ξ1, ξ2, ξ3)X
k
i (18)

yi = ϕk(ξ1, ξ2, ξ3)Y
k
i (19)

where ϕk are the shape functions, k = 1, . . . , 40, and Xk
i , Y

k
i are the coordinates of the k-th node.

With eqs. (18) and (19), eqs. (1) and (2) can be written as

A0
ij =

∂ϕk

∂ξj
Xk

i (20)

A1
ij =

∂ϕk

∂ξj
Y k
i (21)

As it is easy to work out the shape function derivatives and the node coordinates are known, with eqs. (3), (4)
and (6) the values of L and S can be worked out, followed by g⃗ and H through eqs. (14) and (16). The integrals
over volume V0 are performed numerically. For the triangular domain in ξ1, ξ2 Hammer quadrature is adopted,
and Gauss-Legendre quadrature is used for the height domain in ξ3. It can be worked out that for cubic functions
Gauss-Legendre quadrature yields an exact integration result with only 2 points, whereas upon testing 12 Hammer
integration points across the triangular base have shown to be sufficient.

2.2 Rectangular element for the steel decking and immersion technique

The degree of approximation of the rectangular elements must match that of the faces of the prismatic matrix
element so there is node coincidence. Therefore, a 16-node element with cubic approximation in both directions
is developed in a domain of variables ξ̄1, ξ̄2. Its geometry is approximated by a product of Lagrange polynomials,
one for each of the plane directions. In ξ̄3 which is the direction normal to the element the thickness is assumed to
be constant.

It must be noted that the bidimensional axes that define the rectangle’s plane do not necessarily coincide with
the global directions xi, yi. Thus, a local system x̄i, ȳi must be defined. A rotation matrix that transits between the
global and local systems is defined by

R =


û1 û2 û3

v̂1 v̂2 v̂3

ŵ1 ŵ2 ŵ3

 (22)

where û and v̂ are versors that point to adimensional directions ξ1 and ξ2 of the element respectively and ŵ is a
versor normal to the plane (worked out by û× v̂), as illustrated in Fig. 2.

The nodal coordinates must be first converted to the local system, which is done as follows:

X̄k
i = RijX

k
j (23)

Ȳ k
i = RijY

k
j (24)
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Figure 3. Rectangular element in global and local coordinate systems

Calculations are then carried out trough eqs. (20), (21), (3), (4) and (6) and local mechanical unbalanced
force vector ⃗̄g and Hessian matrix H̄ are worked out through eqs. (14) and (16). Plane strain state is assumed
and the Poisson effect is ignored in the thickness direction, so no strains or stresses occur outside the plane and all
calculations can be carried out in only 2 dimensions. The integral over volume V0 yields the thickness value itself
in ξ̄3 and can be performed numerically with two Gauss-Legendre quadratures for each of the directions ξ̄1 and ξ̄2.

The entities ⃗̄g and H̄ must then be rotated back to the global system so they can contribute to the matrix
element. The contribution is carried out for each matrix node that belongs to the active face region as shown
below:

g⃗ ← g⃗ +RT ⃗̄g (25)

H ←H +RT H̄R (26)

3 Validation examples

Two validation examples are presented below. The first one tests the behavior of immersed active face through
a simple example reproductible by lienar elasticy, and the second one applies the current theory to a real steel deck
beam.

3.1 Clamped beam with reinforcement plates

A 100 × 50 × 10 (length × width × height) clamped-free beam is subjected to a load distributed across its
length of q = −10−4. The beam matrix has Young modulus E = 1 and the top and bottom faces are stiffened with
plates of Young modulus E = 100 and thickness t = 0.1. Through linear elasticy one can work out the maximum
deflection on the free edge as w = qL4/8(EI)eq., which in this case turns out to be w = −0.0429.

A 96 element mesh representing this problem yielded edge deflection value of w = −0, 0488 which is only
4.72% apart from the linear elasticy results. The deformed mesh as well as the face elements are shown in Fig. 4.

Figure 4. Clamped beam mesh and active face elements

3.2 Steeldeck beam under four point flexural test

Two meshes have been proposed to emulate a steel deck experiment ran by Gholamhoseini et al. [4]. The slab
has been loaded to failure and cracking and slipping were observed, so only the initial window of linear behavior
was selected for comparison.
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Four-point flexural tests, see Fig. 5, were ran on concrete beams stiffened by a wave-form profile KF-70
manufactured by Fielders Australia Pty Ltd. [8], see Fig. 6. The nominal thickness and experimentally gauged
Young modulus of the steel profiles were t = 0.075 cm and Es = 212 GPa.

Figure 5. Experimental test setup

Figure 6. KF-70 steel decking profile

The beams were made to be 15 cm tall and the transverse sections made of 2 adjacent steel profiles each
spanned 120 cm. The effective length of the structures was of 310 cm with extra 10 cm beyond the supports on
each side. The Young modulus of the concrete was experimentally verified to be Ec = 30.725 GPa.

Two flexural tests were performed with loads applied at distances L/4 (ST70-4) and L/6 (ST70-6) from the
supports.

To evaluate the effect of different levels of discretization, two cross section meshes, see Fig. 7, were generated
and then extruded in 18 groups of elements across the length. The cross section shape was simplified as trapezoids
and active face elements were included across all bottom faces of the mesh to represent the steel decking. The
forces were applied on the top faces of the beam in steps of 5 kN as distributed loads across the entire width and
in 5 cm strips across the length as to represent the spreader beams used in the experiments.

Figure 7. Transverse section meshes

In Fig. 8 the mid-span deflection results obtained by the present simulations are compared to the reference
values.

4 Conclusions

The simulation of the clamped beam in 3.1 validates the proper behavior of the implementation as well as the
stiffness contribution of the immersed active face element.
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Figure 8. Mid-span deflection versus applied load

Regarding 3.2, it is easily noticeable in Fig. 8 that the simulated deflection behavior was fully linear, which
outlines that geometrical nonlinearity was not a factor for the given loads. This leaves phenomena that the current
theory does not encompass, such as layer slipping and cracking of the concrete, as the culprits of the nonlinearity
of the experimental curves.

The heavier discretization of cross section mesh (a) into mesh (b) yielded no difference in the results, showing
that the immersion of active faces has the same general effect on the structure even if the matrix elements are
relatively big. This allows for less discrete and therefore lighter meshes to be used without any loss for this theory.

The relatively high difference between the experimental and simulated curves even on the linear region,
notably on the ST70-6 case, could be explained by a number of factors. Even though the materials that constitute
the beams had their properties tested, the fact only a single experiment was ran for each configuration may have
brought uncertainties. On the simulation’s side, the simplification of the decking’s profile leading to the absence
of the re-entrant bits may have had an impact in the resulting stiffness of the structure.

Nevertheless, with further studying so the material properties are properly calibrated and the mesh geome-
try is sufficiently descriptive of the analyzed problem, the present theory remains as a potential computationally
lightweight candidate for quick evaluation of slabs under service loads.
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Maceió, Alagoas, November 11-14, 2024


	Introduction
	FEM based on positions
	Triangular base prismatic element for the concrete matrix
	Rectangular element for the steel decking and immersion technique

	Validation examples
	Clamped beam with reinforcement plates
	Steeldeck beam under four point flexural test

	Conclusions

