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Abstract. The behavior of structures subjected to ground motion must be thoroughly understood to mitigate risks 

and ensure compliance with safety standards The internal forces provided by the Response Spectrum Method, in 

the frequency domain, are not always suitable for the design of reinforced concrete structures. The behavior of 

concrete is different under compression and tension. The sum of the modal absolute values through SRSS (Square 

Root of the Sum of Squares) and CQC (Complete Quadratic Combinations) approaches provides maximum 

absolute internal forces. However, negative or positive values indicate compression and tension, and reinforcement 

design is greatly influenced by whether stresses are compressive or tensile. The purpose of this research is to 

present a methodology for the seismic dynamic analysis of nonlinear framed structures, in the time domain, in 

which the equilibrium is rigorously examined at the end of each time step. Constitutive models adopted for the 

cyclic behavior of concrete and steel are discussed. A Timoshenko beam element suitable for this nonlinear 

analysis is presented. The time integration algorithm is based on Newmark's implicit method. Equilibrium 

conditions are guaranteed at the end of each time step through an iterative process. The damping matrix uses the 

classic Rayleigh formulation. Equivalent nodal forces are calculated from accelerograms. An example is presented 

and conclusions are drawn. Comparison with experimental data shows that the model acceptably predicts the 

dynamic response of such structure for design purposes. 
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1  Introduction 

Seismic structural analysis attracts significant interest since careful analysis of the dynamic response of 

structures is necessary to ensure their safety. In particular, certain critical infrastructures, such as nuclear power 

plants, demand rigorous seismic analysis.  

One common approach in this dynamic analysis is the Response Spectrum Method (RSM), which operates 

in the frequency domain. The RSM involves summing the modal absolute values through Square Root of the Sum 

of the Squares and Complete Quadratic Combination methods. However, these methods do not always provide 

accurate estimates of the maximum forces in the rebars of nonlinear structures. Whether forces are negative or 

positive relative to the global coordinate system is crucial information for structural design, as these indicate 

whether stress is compressive or tensile, respectively. 

This work aims to apply a methodology for the dynamic seismic analysis of nonlinear frame structures in the 

time domain. A finite element method based on Timoshenko beam theory is selected to model three-dimensional 

reinforced concrete frame structures. The physical nonlinearity of materials is considered for normal stresses, while 

shear stresses are linearly estimated. Material constitutive relations from the literature are used to ensure reliability 

in stress-strain analysis. Equivalent nodal forces are obtained from accelerograms. Time integration uses 

Newmark's implicit method. This model is applied to a structure tested by Clough and Gidwani [1] and later 

discussed by Filippou et al [2]. The results are compared and discussed. 
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2  Timoshenko beam element formulation 

A Timoshenko beam finite element with four nodes and rectangular cross section is used in this study. A 

small displacement approach from the nonlinear formulation presented in Braz and Schulz [3] is used. 

The displacements at a point 1 2 3, ,X X X  are expressed by 1 1 1 3 1 2 2 1 3u U X X X X X , 

2 2 1 1 1 3u U X X X , and 3 3 1 1 1 2u U X X X . iU  and i  are respectively the displacements 

and the rotations of the cross section at direction iX , where 1, 2, 3i . The normal strain is defined as 

11 1 1 3 2 2 3X U X X . Shear strains in 2X  and 3X  directions are 12 1 2 1 3X X  and 

13 1 3 1 2X X , respectively. Shear distortions are given by 2 3 2U  and 3 2 3U . The 

notation 1X is used for simplicity. 

The principle of minimum strain-energy yields  

 11 11 12 12 13 13;T T
n s

V V
dV dVu f u f  (1) 

where V  is the volume and u  is the displacement vector of the beam element. Normal stresses are denoted as 

11 , and shear stresses in 2X  and 3X  directions are 12  and 13 , respectively. The nodal force vector is given 

by n sf f f , where nf  and sf  respectively denote the normal and shear force components. 

The hypothesis that plane cross sections remain plane but not necessarily normal to the deformed axis yields 

the nodal normal strain component, i.e. 

 ε ε ε11 1 1 1 1 3 2 1 1; ;
TT T

n n n nX X X U X Xx B u  (2) 

where 2 31
T

X Xx  is the position vector and nB  is the Lagrange interpolation matrix for normal strains.  

The substitution of eq. (2) in the normal component of  eq. (1) results in 

 1n n n
L

dXB s f  (3) 

where L  is the beam length and vector 1 2 3
T

n N M Ms  corresponds to the normal internal forces. 

The shear component of eq. (1) may be rewritten according to the definitions of 12  and 13 , which yields 

 ε2 2 3 3 1 1 1 1
T T
s s s

L L
V V T dX dXs u f  (4) 

where 1 2 3 1
T

s X V V Ts is the shear internal forces. Vector ε 1 2 3 1
T

s X  is determined by 

ε 1 1
T

s sX XB u , such that sB  is the Lagrange interpolation matrix for shear strains. Equation (4) yields 

 1s s s
L

dXB s f  (5) 

The equation of equilibrium is obtained from eqs. (3) and (5), i.e. 

 1 1n n s s
L L

dX dXB s B s f  (6) 

The linearized incremental equation is expressed by 

 1 1n n s s
L L

dX dXB s B s f  (7) 

Incremental normal stresses and strains are related by 11 11E , where E  is the derivative of the 

nonlinear constitutive equation 11 11 . From eq. (2), 11  is defined by 

 ε ;T T
n n n n n n

A
E dAs D D B u D x x  (8) 

A linear elastic incremental shear stresses and strains relation, i.e. εs s ss D , yields 

 ε T
s s s s ss D D B u  (9) 

The diagonal 3 3  matrix sD  is defined by its elements 11 22s s sD D k GA  and 33sD GJ , where G
and J  are the shear modulus and the torsional stiffness, respectively. The shear coefficient is taken as 



J. V. S. Cóco, M. Schulz 

CILAMCE-2024 

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Maceió, Brazil, November 11-14, 2024 

 

10 1 12 11sk , as suggestion by Cowper [4]. 

The substitution of eqs. (8) and (9) in eq. (7) yields the tangent stiffness matrix K , which is given by 

 1; T T
n n n s s s

L

dXK u f K B D B B D B  (10) 

Integrals in eqs. (6) and (10) are numerically resolved by Gauss-Legendre quadrature and reduced 

integration. Three integration points are used in a four-node beam element. 

3  Concrete constitutive model 

Concrete fiber discretization must adequately account for confined and unconfined concrete fibers. Confined 

and unconfined concrete zones are bounded by the outer face of the stirrup-tie. The strength increase factor due to 

confinement is defined as 1c s yh cK f f , where s  is the ratio between the volume of the hoop set and the 

volume of concrete core, cf  is the concrete compressive strength, and yhf  is the yield strength of stirrups or hoop 

sets. For unconfined concrete, 1cK .  

The compressive monotonic curve by Kent and Park [5], as modified by Scott et al. [6], is adopted (Fig. 1). 

Tensile stresses are neglected. For concrete strains greater than 0 0.002c cK , the Hognestad parabola is 

considered. Otherwise, the monotonic curve follows a line segment with softening slope Z , which is given by 

 0.5 3 0.29 145 1000 0.75 0.002c c s core h cZ f f h s K  (11) 

where coreh  is the height of the confined concrete zone, and hs  is the spacing between stirrups per unit length. 

Concrete stress remains steady if minimum compressive stress 0.2cmin cK f  is reached. The ultimate 

compressive strain is taken as MPa0.004 0.9 300cu s yhf . For unconfined concrete, 0.004cu . 

 

Figure 1. Concrete constitutive stress-strain model 

In the case of unloading, an unloading curve is established by the line connecting points R and P (Fig 1). The 

strain cr  at point R is the strain at reversal. The strain cp  at point P is defined by Karsan and Jirsa [7] as 

 
se

se

2

0 0 0
0

0 0

0.145 0.127 2

0.707 2 0.834 2

cr c cr c cr c
cp c

cr c cr c

 (12) 

Concrete stress is zero for strains greater than cp . In the case of further reloading and unloading, the 

unloading path is followed until concrete strain is smaller than cr , when it returns to the original monotonic 

curve. Further unloading paths may be established by eq. (12) if unloading starts on the monotonic curve. 

4  Steel constitutive model 

This study follows the steel model by Menegotto and Pinto [8], as modified by Filippou et al. [9]. 

Yield stress and strain are denoted by sy  and sy , respectively, such that sy yf , where yf  is the yield 



Seismic analysis of nonlinear reinforced concrete frame structures 

CILAMCE-2024 

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Maceió, Brazil, November 11-14, 2024 

 

strength of steel. The monotonic envelope curve follows the line segment with slope equal to the steel initial 

modulus 0sE . After yielding, the plastic slope is considered as 1 0s sE bE , where b  is a material parameter.  

 

Figure 2. Steel constitutive stress-strain model 

The stress-strain trajectory of steel stress s  and strain s  remains within the monotonic curve until 

unloading happens on the plastic line. The reversal curve (Fig. 2) is defined by Menegotto and Pinto [8] in terms 

of the normalized stress *
s  and strain *

s , i.e. 

 
1* * * *1 1
RR

s s s sb b  (13) 

 *
0s s sr s sr  (14) 

 *
0s s sr s sr  (15) 

where sr  and sr  are the stress and strain at reversal, respectively, while 0s  and 0s  are the stress and strain at 

the intersection between lines el  and pl . R  is a curvature parameter which accounts for the whole loading history. 

The modified model by Filippou et al. [9] allows R  to be determined solely in respect to the previous reversal 

trajectory. The steel isotropic strain hardening effect is also implemented in this later model. 

The tangent constitutive relation s s considers the chain rule of derivatives, i.e. 

 * *
s s s s s s  (16) 

5  Time integration method 

The equation of motion of a structure with nonlinear behavior is 

 Mu Cu f u p  (17) 

where M  is the mass matrix, C  is the damping matrix, and f  is the restoring force vector, as defined by eq. (6). 

tu  is the displacement vector and tp  is the external force vector, where t  denotes time. The velocity and 

acceleration vectors are d dtu u  and 2 2d dtu u , respectively. 

In time-step 1i , 1iu  is initially approximated as iu . Implicit acceleration 1iu  and velocity 1iu  are 

 1 1 12

1 1 1
1

2
i i i i i i

tt
u u u u u u  (18) 

 1 1 1 1 1
2

i i i i i it
t

u u u u u u  (19) 
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where 1 2  and 1 4  are integration constants for stability and convergence.  

The residual function g  ensures that eq. (17) is satisfied, i.e. 

 1 1 11 1 1 0i i ii i ig u Mu Cu f u p  (20) 

The displacement vector 1
j
iu  at iteration j  should meet the criteria tol1

j
ig u . If the former 

expression is not respected, 
1
1
j
iu  at iteration 1j  is obtained by 

 1 1
j

eff i iK u g u  (21) 

 
1

1 12
1

1
j
i j

eff i i
i tt

g u
K M C u K u

u
 (22) 

 
1

11 1
j j

ii iu u u  (23) 

where the tangent stiffness matrix K  is obtained from eq. (10).  

The damping matrix 1iC u  is considered as Rayleigh classic damping, which is approximately given as 

proportional to the mass and stiffness matrices, i.e.  

 
0

1 2 1ic cC M K u  (24) 

where 1c  and 2c  are constants. C  is determined at the beginning of each time-step and is not updated along the 

iterative procedure, as suggested by Filippou et al. [2].  

Considering that the damping ratio value is constant for all natural modes of vibration yields 

1 1 2 1 22c  and 2 1 22c , where  is the damping ratio. 1  and 2  are respectively 

the angular natural frequencies of the first and second natural modes of vibration of the associated undamped 

system.  

6  Equivalent earthquake nodal forces 

This item discusses two nonlinear seismic analysis models. The actual model assumes that earthquake forces 

are applied at foundation nodes, which are subjected to rigid body movements. The analytical model restricts the 

foundation nodes and apply equivalent forces to the remaining nodes of the structure, which are considered free.  

The equation of motion of the actual model is expressed by 

 
FF L F

RR R R R t

M 0 u f u 0

0 M u f u p
 (25) 

where subscripts R  and F  stand for the foundation and remaining nodes of the structure, which are respectively 

restrained and free in the analytical model. The displacement vector is 
T

L Ru u u . Mass M  is simplified as 

a diagonal matrix. Damping C  is neglected. External force vector R tp  represents the earthquake loads, which 

are applied at foundation level in the actual model. Force vector 
T

L Rf f f  is determined by eq. (6).  

The equation of motion of the analytical model is expressed by removing from eq. (25) the rigid body 

movement at foundation level, which is represented by L Ru u  , and by considering that f does not change. 

 

*

*

LL L L F L

RR R R R R

t

t

M 0 u u f u p

0 M u u f u p
 (26) 

Subtracting eq. (25) from eq. (26) yields the dynamic-equivalent applied forces at free nodes in the analytical 

model and its reactions at restrained nodes, which are, respectively, *L LL Ltp M u  e *R Rt tp p . 
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7  Example 

The test conducted by Clough and Gidwani [1] investigates the behavior of a two-story building subjected to 

an earthquake in the main horizontal direction. Concrete blocks were added to increase vibration response. In this 

study, the structure was modeled as a two-story frame, considering its geometric symmetry in the y direction (Fig. 

3). Weight and mass from the half concrete blocks, as well as from the half-transverse beams, are distributed over 

their respective supporting nodes. Material properties are adopted according to data presented by the test authors. 

Due to a lack of data on the b  parameter of steel, the values suggested by Filippou et al [2] are used. 

Since the proposed beam element is limited to rectangular sections, elements in zone 1, defined in Fig. 3, are 

considered elastic, such that their cross-sectional areas and moments of inertia, including slab contribution, are 

adopted for the cracked section according to the values suggested by Filippou et al [2]. Elements in zone 2, where 

a greater effect of material plasticity is expected, are assumed to be nonlinear and have a rectangular cross section. 

The earthquake was simulated on a shaking table following the N69W accelerogram of the Kern County 

Earthquake, measured by the Taft Lincoln Tunnel station, California, 1952. Ground motion was tested in three 

stages, scaled at peak accelerations of 0.095g, 0.57g, and 0.65g. In this study, only the 0.57g stage was analyzed. 

Figure 4 shows the scaled accelerogram, as retrieved from the Center of Engineering Strong Motion [10] database. 

 

Figure 3. Two-story building model 

 

Figure 4. Taft 1952 N69W accelerogram 

The displacement histories on each floor, as obtained by the analytical model, are presented in Fig. 5. The 

analytical results agrees with the experimental maximum and minimum displacements at the top and bottom stories 



J. V. S. Cóco, M. Schulz 

CILAMCE-2024 

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Maceió, Brazil, November 11-14, 2024 

 

( max
TOP
x = 0.057, min

TOP
x = -0.070, max

BOTTOM
x = 0.038, and min

BOTTOM
x = -0.050 m). 

 

Figure 5. Displacement history results from the analytical model 

8  Conclusions 

When compared to the test results as presented in Clough and Gidwani [1], the maximum and minimum 

displacements of the analytical model are close to those of the test, favoring safety for design purposes. Remaining 

displacements are relatively smaller after peak accelerations, i.e. after 7.5 s. This is mostly due to the effects of 

bond deterioration and slippage of rebars, which are not considered in the element formulation. Filippou et al [2] 

discuss the influence of reinforcement slippage on dynamic response, justifying the observed difference. The study 

of bond effects is an object for further developments. 
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