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Abstract. This study presents a novel approach for simulating geotechnical problems including the initiation and
post-failure behavior of discontinuities. The developed method is constituted by a mixed total Lagrangian–updated
Lagrangian Smoothed Particle Hydrodynamics (SPH) method, which the main characteristic is to distinguish be-
tween internal forces within a body, represented by the internal stress, from contact forces interactions with other
bodies, as collision stress. Internal stress effects are calculated using total Lagrangian SPH interpolations, while
collision stress effects are computed with updated Lagrangian. discontinuities are simulated by employing plastic
deformation as a damage measure, in which fully damaged particles detached from their original body are treated
as a separate particulate material with neighboring interactions via collision stress.
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1 Introduction

Smoothed Particle Hydrodynamics (SPH) has emerged as a numerical method for simulating astrophysical
problems [1, 2], and it was soon acknowledged as a versatile method by being used in various applications including
fluid dynamics (e.g., Monaghan [3], Asai et al. [4], Morikawa et al. [5, 6]), fluid-structure interaction (FSI) (e.g.
Khayyer et al. [7], Morikawa and Asai [8]) and solid mechanics (e.g. Bonet and Lok [9], Lee et al. [10, 11]), to
name a few. Unlike grid-based methods, SPH represents the materials with discrete Lagrangian particles, allowing
for efficient and accurate modeling of large deformations.

Under this premise, several researchers have used the SPH method for landslide simulations such as Bui et al.
[12], Blanc and Pastor [13], Morikawa and Asai [14, 15] and others. However, the appearance of discontinuities
within the soil mass as the landslide mass detaches is still a great challenge. The primary objective of this study is
to introduce a novel SPH method capable of simulating the post-failure behavior of detached soil masses including
self-contact interactions. By integrating the stability and accuracy of the total Lagrangian framework with the
adaptability of the updated Lagrangian, our method aims to accurately represents the complex interactions between
intact and detached regions within a soil mass during landslide events. All the codes are authorial and run in a single
GPU with a NVIDIA A100 graphic card.

2 The SPH Method

The SPH method is a Lagrangian meshless particle method in which functions are approximated according to
a weighted summation of the interactions with neighboring particles [1, 2]. In most of SPH applications, the most
relevant SPH operators are the spatial derivatives. In the current work, we use a corrected version developed by
Bonet and Lok [9], Randles and Libersky [16], Ganzenmüller [17] that improves the accuracy of the first derivative
evaluation. Such equations are shown in details in the next subsection, and all of them use the concept of corrected
kernel gradient ∇̃Wij which is defined as
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∇̃Wij =
(∑

j

mj

ρj
∇Wij ⊗ rji

)−1

∇Wij ; ∇̃0Wij =
(∑

j

mj

ρj
∇0Wij ⊗ Rji

)−1

∇0Wij , (1)

in the updated and total Lagrangian frameworks, respectively. In the above equations. i and j stands for a target
and a neighbor particle, respectively, m the mass, ρ the density, rij = xi − xj the relative position vector in the
current configuration, Rij = Xi − Xj the relative position vector in the reference configuration and W the weight
function (also called kernel). In this study, we selected the cubic spline kernel [18] with reduced influence radius
hinf of 1.99d, where d is the particle diameter. Using the cubic spline kernel, the smoothing length can be defined
as h = hinf/2.

2.1 Neighboring search in the mixed updated Lagrangian-total Lagrangian framework

Let us consider a target particle i. In this study, we define the group of neighboring particles under the
influence of the internal and collision stress, respectively, as

Ti ≡ {j = 1, 2, ..., N | Rij < hinf ∧ xj ∈ Ωi ∧ Di, Dj < 1}, (2)

Ui ≡ {j = 1, 2, ..., N | rij < hinf ∧ (xj /∈ Ωi ∨ Di = 1 ∨Dj = 1 ∨ Rij > 2hinf)}. (3)

In summary, neighboring particles that share the same body (Ω) and are not fully damaged (D < 1) are
contained in T, that is, their neighboring search are conducted in the total Lagrangian framework. On the other
hand, neighboring particles from different bodies or in contact after a discontinuity are contained in U, that is, with
neighbors in updated Lagrangian. Another specificity of the current method is that we consider a smaller influence
radius than usual to avoid the influence of particles far apart (hinf = 1.99d).

With the above definitions, it is now possible to define corrected gradient operators in both updated and total
Lagrangian frameworks as

⟨∇f⟩i =
∑
j∈Ti

mj

ρj
(fj − fi)∇̃Wij ; ⟨∇0f⟩i =

∑
j∈Ui

mj

ρj
(fj − fi)∇̃0Wij (4)

∇̃Wij = Li∇Wij ; ∇̃0Wij = Li∇0Wij ; Li =
( ∑

j∈Ti

mj

ρj
∇0Wij ⊗ Rji +

∑
j∈Ui

mj

ρj
∇Wij ⊗ rji

)−1

. (5)

3 Formulation

Let us formulate the governing equations using the premises of continuum mechanics. A body may be
subjected to volumetric forces b and surface forces t. Such surface forces may be divided into internal forces
resulting from interactions between adjacent body parts represented by a traction vector ti (or Ti) and contact
forces as a result of interactions with outer bodies represented by tc (or Tc) at Γc, so that t = ti + tc. Following
Cauchy’s Theorem, the body forces of the material may be represented by a second order vector called Cauchy
stress σ or nominal stress P such that t = σ · n (or T = P · n0, in the reference configuration), where n is the
normal direction vector. Applying the Cauchy’s Theorem for the contact forces, we define the contact stress σc as
tc = σc · n.

The concept of contact stress has been first described by Hertz in 1882 [19, 20], and it is one of the key
concepts for the field of contact mechanics. We do not define the nominal stress for the contact forces because we
do not use it in our proposed method. In addition, we denote the stress tensor for the internal forces ti simply as σ
(or P), for simplification.

3.1 Governing equations

Applying the conservation of linear momentum to a body subjected to all conditions described previously
and decomposing the traction vector as t = ti + tc, using the Gauss’s Theorem, we derive
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Dv
Dt

=
1

ρ
∇ · σ +

1

ρ
∇ · σc

∣∣∣
Γc

+ b, (6)

where D/Dt is the time derivative and v, the velocity. In addition, the evolution of the deformation gradient
F = ∂x/∂X can be defined as [21]

DF
Dt

= (∇0 ⊗ v)T . (7)

In the current work, we use the total Lagrangian form, i.e., the reference configuration, to calculate the
acceleration caused by σ, while using the updated Lagrangian form, i.e., the current configuration, for σc. Also,
we decided to use ρ0 instead of ρ, since it is a prescribed value that does not evolve with time. Therefore, we may
rewrite Eq. (6) by transforming σ into P and σc into τ c as

Dv
Dt

=
1

ρ0
∇0 · P +

1

ρ0
∇ · τ c

∣∣∣
Γc

+ b, (8)

where τ is the Kirchoff stress. To simplify the notation, we will denote ∇ · τ c
∣∣
Γc

by simply ∇ · τ c from now on.
Finally, Eqs. (8) and (7) can be discretized in time using a symplectic time integration scheme as

vn+1 = vn +∆t
( 1

ρ0
∇0 · P +

1

ρ0
∇ · τ c + b

)
, (9)

Fn+1 = Fn +∆t(∇0 ⊗ v)T , (10)

where the superscripts n and n+ 1 refer to previous and next time steps, respectively.

4 Finite strain elastoplasticity

The current method is based on finite strain elastoplasticity, which is more suitable for large deformation
problems. The formulation described below is similar to the one presented in [8, 15]. We use the Hencky model
to calculate the elastic part of the stress, which makes it convenient to adapt to any type of yield criteria for the
plastic part. The stress (in this case, the Kirchoff stress) has a linear relationship with the logarithmic strain as

τ = Cel : ϵ; ϵ =
1

2
lnB, (11)

where Cel is the tangent modulus for the Hookean material, ϵ is the logarithmic strain, and B = F · FT is the left
Cauchy-Green strain tensor. Notice that the symbol ln refers to the tensor logarithmic operation, which is different
from the scalar logarithmic operator ln.

4.1 Internal stress return mapping

The current method is based on the multiplicative split between elastic and plastic deformation gradients
(F = Fe·Fp). Using the logarithmic strain and some logarithm properties, it is straightforward to derive ϵ = ϵe+ϵp.
In this way, using the Hencky model and a conventional return mapping algorithm, we update the stress as

τn+1 = τ trial −∆γCel : Nn+1, (12)

Btrial = ∆F · Bn ·∆F, ∆F = I +∆t(∇0 ⊗ v)T · (Fn)−1, (13)

ϵtrial = 1
2 lnBtrial, τ trial = Cel : ϵ

trial. (14)

where ∆γ is the plastic multiplier, N is the direction of the plastic flow, and the superscript “trial” refers to a trial
state of the stress.
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Figure 1. Brazilian test: snapshot of simulation results for different values of r/R at ε = 0 and ε = 0.1%

4.2 Collision stress return mapping and discontinuity initiation

In this study, we consider the simplest and most classical approach to calculate discontinuity initiation, the
so-called strength hypotheses [22]. According to this concept, a discontinuity may be initiated if the material is
subjected to a determined stress condition above its plastic yielding. Therefore, we define a damage variable using
the plastic deformation as D = ϵp/ϵlimit ≤ 1, where ϵp is the plastic deformation, which depends on the yield
criterion used and ϵlimit is a material parameter that defines the amount of plastic deformation before discontinuity
initiation.

Then, we consider that the contact stress has a similar behavior as the internal stress with the exception that
it does not produce traction forces. Therefore, any positive value of τ c in a principal direction is eliminated. To
evolve the contact stress, we define an equivalent contact logarithmic strain as follows

ϵc =
1

2
lnBc; Btrial

c = ∆Fc · Bn
c ·∆Fc; ∆Fc = I +∆t(∇⊗ v)T . (15)

Notice that, since the contact stress is calculated using the updated Lagrangian framework, ∆Fc must be
calculated in the current configuration. The remaining of the return mapping is the same as explained in section
4.1. Since the contact stress refers to the reaction of the material under contact with an external body, we reset the
logarithmic strain ϵc of a particle i in the case that it is not in contact with any other particle. In other words, if
there is not any neighboring particle j in which |rij | < 1.5d and j ∈ Ui, we set ϵc = I and, consequently, τ c,i = 0.

5 Numerical tests

5.1 Brazilian test

The Brazilian test is one of the most standard experiments to determine the tensile strength of a material. It
consists of a cylindrical material sample placed sideways between two plates that exert a compressive force on the
sample. Given a sample of radius R and length L without a hole, and considering that the sample detached at peak
force P , the tensile strength of the material is given by σt =

P
πRL , which considers that the material is brittle and

its strength depends only on its tensile stress (that is, disregarding shear and compressive failures). Therefore, we
have chosen a simple yield criterion that considers only the higher principal stress σ1 (or τ1) to describe its plastic
behavior. We follow the same material parameters as the physical experiment described in Li et al. [23] (elastic
parameters are taken from Li et al. [24]) and fixed the values of d = 5×10−4 m and δt = 10−8 s. To compare with
Li et al. [23]’s results, we have simulated six models with different values of internal radius r for a hole placed in
the center of the sample. To simulate a brittle fracture, we set the plastic deformation limit ϵlimit as 0.01 %. Gravity
acceleration is ignored and the compressive plates are fixed with a velocity of 0.01 m/s.

Fig. 1 shows the resulting simulation for various values of r/R at the beginning (ε = 0) and end of the
simulation (ε = 0.1%). Qualitatively, the simulation was fairly successful, since it could reproduce the fact
observed in Li et al. [23] that secondary horizontal cracks appears in samples with larger inner holes. The secondary
cracks are also responsible for the appearance of a second peak in the evolution of P over time for samples with
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Figure 2. Brazilian test: graph of P over ε for different values of r/R (left) and graph of maximum P over r/R in
comparison with experimental results [23] (right)
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Figure 3. Triaxial compression test: snapshots of simulation results for different values of p0 and ε (left) and graph
of q over ε for different values of p0 in comparison with experimental results [25] (right)

larger r/R, as shown in Fig. 2. Finally, we compare our results of maximum P for different values of r/R
with the experimental results, showing a very good agreement between them. Including input/output of files, the
computational performance was about 11 Mip/s (million iterations particles per second).

5.2 Triaxial compression test

This numerical example is the most important validation test, since our purpose with this study is to develop
a numerical method for geomaterials in which the detached material keeps in contact with the original mass. In the
triaxial compression test, the sample is loaded in all directions with a fixed water pressure p0, and the side surface
is protected by a rubber flexible material to avoid the water to infiltrate into the sample. To model this rubber
material and the fixed pressure, we placed ghost particles around the sample that moves with the same velocity as
the closest sample particle and fixed with a collision stress of σc = p0I. The geometrical and material parameters
are the same as Kirishima [25]. Gravity is neglected and the yield criterion is the Mohr–Coulomb with ϵlimit = 0.1.
Here we consider positive stress as compression in order to show the results in a familiar style for soil mechanics.
In our numerical tests, we calculate the value of q as the force of the sample applied to the cap divided by the upper
surface area minus p0. d = 10−3 m and δt = 2/times10−6 s are fixed for all simulations.

Fig. 3 shows the simulation for different values of p0 and ε = hc/H , where hc is the displacement of the
cap and H is the height of the sample initially. As expected, the resulting shear band follows an approximately
50o of inclination. The evolution of q also follows a similar pattern in comparison to the experimental results from
Kirishima [25], as shown in Fig. 3. However, we observed a large peak value of q at the initiation of the plastic
phase in our results, as well as some sudden drops in between. Such sudden drops reflect the initiation of a new
discontinuity and the release of stress in the process. Since the scope of this work is to enable stable simulations
of post-failure materials, we consider that this numerical test was successful. The computational performance was
approximately 13 Mip/s including input/output of files.
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Figure 4. Selborne experiment: comparison of the simulation result at t = 50 s between the proposed method and
our previous results [14] (d = 0.5 m) (left) and comparison between photo from Cooper et al. [26] and simulation
at t = 50 s in a 3D view (right)

5.3 Selborne experiment

The last numerical example is to show an application of the current method to a real world problem. Here, we
consider the famous Selborne experiment [26], where a saturated soil slope of 1 : 2 is loaded with a water pressure
at the bottom of the slope, so that a landslide is observed at the water pressure of p = 70 kPa. To simulate the
current problem, we included a soil-water coupling technique based on the u − w − p Biot’s formulation in the
same way as in Morikawa and Asai [14]. Please refer to this paper, if the reader is interested in understanding the
details of the soil-water coupling formulation. The model geometry, boundary conditions, material parameters and
others can also be seen in Morikawa and Asai [14].

Here, we show the capability of our method in reproducing clear discontinuities. Fig. 4(left) shows a snapshot
of the simulation at t = 50 s comparing our results with Morikawa and Asai [14] using the same particle diameter
(d = 0.5 m). In addition, we show a comparison between a photo from Cooper et al. [26] and our simulation in
Fig. 4(right) (with d = 0.25 m). From these two figures, it is clear that our current results are more realistic in the
sense that it reproduces the actual phenomenon of the detachment of the soil mass during the landslide. Because
of the solution of the solution of a pressure Poisson equation for the u−w− p formulation, the computational cost
is lower compared to the previous numerical tests, being approximately 4 Mip/s

6 Conclusions

In this work, we have developed a mixed total Lagrangian–updated Lagrangian SPH method to simulate
geomechanics problems with clear discontinuities. The core idea of the proposed method is to separate the internal
forces within a body and the contact forces from the interaction with other bodies as an internal stress and a collision
stress, respectively. Finally, to simulate discontinuities, we propose to use the plastic deformation as a measure
of damage, so that fully damaged particles are detached from its previous body and are considered a separated
particulate material (therefore, their interaction being calculated with the collision stress). Then, we validated the
proposed method with the Brazilian test, triaxial compression test and the Selborne experiment. Computational
time was acceptable, reaching 11 to 13 Mip/s for problems that does not involve water coupling and 4 Mip/s for
problems with water coupling that requires solving a pressure Poisson equation.

We successfully accomplished the main goal of simulating the initiation of discontinuities and its following
post failure behavior. In particular, we were able to reproduce the interaction between the detached material within
a shear band and the intact material, showing a clear discontinuity between them. We are aware that the methods
to model the initiation of discontinuities used in this work are generally simplistic, so usage of more elaborate
methods such as phase-field may be a next target for future works.
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