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Abstract. This work presents a methodology for free surface non-Newtonian incompressible flows using a particle
position-based formulation of the Particle Finite Element Method (PFEM), motivated by the simulation of fresh
concrete flow. This method is based on the Lagrangian description of the flow and represents the fluid domain
by cloud of particles, with a finite element mesh being built, taking the particles as nodes, to solve the motion
equations and update the particle positions. To deal with large distortions of fluid flows, such mesh is constantly
rebuilt, leading to a method very robust to deal with topological changes within the fluid domain. This approach re-
quires updating the reference configuration, enabling the use of partially or fully updated Lagrangian descriptions.
The weak solution is based on the stationary energy principle considering current nodal positions and pressures
as variational parameters, deviating from the common practice of employing velocity and pressure as unknowns.
Furthermore, smoothed version of the Bingham viscoplastic model is chosen to represent the fresh concrete behav-
ior, keeping stresses independent of strain history and making updating the reference for the fluid simple, without
the need for considering the stress distribution in the past reference. The implicit α-generalized strategy is chosen
for time integration, enabling second order convergence and ensuring good stability due to the control over nu-
merical dissipation at high frequencies. Finally, selected 3D example is simulated to test and verify the proposed
methodology.

Keywords: PFEM; non-Newtonian; concrete flow.

1 Introduction

The computational simulation of flows with moving boundaries, particularly free surfaces flows with topo-
logical changes, presents a significant challenge. In this context, the methodologies can be divided into two main
classes: mesh-based methods and particle methods, also known as meshless methods. These methodologies can
be described using Eulerian (spatial), Arbitrary Lagrangian-Eulerian (ALE) or Lagrangian (material) approaches.

In the Eulerian description, fluid properties are recorded at fixed points in space on a fixed mesh, referencing
the current configuration. When using this approach to simulate such flows, besides selecting methods to solve the
governing equations (e.g., FEM, FDM, FVM), additional techniques are needed to track the free surface movement.
Techniques like Marker and Cell (MAC), Simple Line Interface Calculation (SLIC), Volume of Fluid (VoF), and
Level Set methods were introduced by Welch et al. [1], Noh and Woodward [2], Hirt and Nichols [3], and Osher
and Sethian [4], respectively.

Hirt et al. [5] proposed the ALE method in the context of finite differences, enabling independent mesh motion
from the fluid, then facilitating the solution of various free surface problems. However, despite the mesh’s ability
to move, it still struggles with topological changes due to severe distortions compromising simulation stability.

In the Lagrangian approach, material properties are tracked along the trajectory of each particle, using the
initial configuration as a reference. Within the context of mesh-based methods, the Lagrangian description can be
used to simulate free surface flows by restricting displacements and strains to finite values. This is done to avoid
large mesh distortions that compromise simulation stability (see e.g. in Avancini and Sanches [6]). However, this
limitation restricts the scope to a small set of problems.
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Within the realm of particle methods, several techniques stand out for their ability to handle flows with free
surfaces and topological changes, adopting Lagrangian description. These include the Discrete Element Method
(DEM) proposed by Cundall and Strack [7], Smoothed Particle Hydrodynamics (SPH) developed by Gingold and
Monaghan [8], and the Moving Particle Semi-implicit (MPS) method introduced by Koshizuka and Oka [9].

To integrate the precision and robustness of mesh-based techniques with the advantages of particle-based
methods, Idelsohn et al. [10] introduced a novel hybrid approach known as the Particle Finite Element Method
(PFEM). This procedure integrates periodic remeshing with the α-shape method to delineate fluid boundaries.
Cremonesi et al. [11] provides a good overview of the theory and applications of PFEM, highlighting its potential
to simulate free surface flows, fluid-structure interaction, industrial processes, and landslide flows.

Additionally, Coda [12], inspired by the work of Bonet et al. [13], proposed a FEM formulation for large de-
formation problems where the unknown variables are the nodal positions instead of displacements. This naturally
incorporates geometric nonlinearities into the formulation. Based on this method, Avancini et al. [14] proposes a
particle-position-based PFEM approach for incompressible Newtonian flows. Such method eliminates the need for
an additional step to compute displacements from particle velocities, naturally incorporates geometric nonlineari-
ties via the deformation gradient, and is well-suited for monolithic simulation of fluid-structure interaction (FSI)
problems, aligning with the typical representation of hyperelastic materials in terms of position or displacement.

This work extends the application of the particle-position-based PFEM formulation to incompressible non-
Newtonian fluids, seeking application to fresh concrete flow modeling. It is also based on previous works by
Reinold et al. [15], Reinold and Meschke [16], Franci and Zhang [17] and Cremonesi et al. [18], that simulated
fresh concrete flows using conventional PFEM.

Newtonian fluids are characterized by constant dynamic viscosity, with linear relation of shear stress with
distortion rate. However, for non-Newtonian fluids, this parameter varies with the strain rate according to the
appropriate curve modeling the specific fluid. Specifically for the flow of fresh cement-based materials, such
as mortar and concrete in their fresh state, two approaches are commonly used to model the material behavior:
viscoplastic and elasto-viscoplastic models.

The viscoplastic models include the Bingham model, adopted by Reinold et al. [15], Li et al. [19], Tran-Duc
et al. [20], Franci and Zhang [17], Abo Dhaheer et al. [21], Lashkarbolouk et al. [22], and Cremonesi et al. [18],
and the Herschel-Bulkley model, adopted by Jiang et al. [23], Mu et al. [24], Li et al. [19], and Feys et al. [25].
Moreover, the elasto-viscoplastic models are adopted in the studies of Reinold and Meschke [16], and Hosseinpoor
et al. [26], showing that elasto-viscoplastic models can simulate the behavior of fresh concrete more accurately.

In this work, we chose the Bingham viscoplastic model due to its simplicity of implementation and lower
computational cost. It keeps stresses independent of strain history and simplify updating the reference for the fluid
without needing to consider past stress distribution. Moreover, it provides satisfactory results for most applications.

2 Governing equations

In the following sections, we provide a brief discussion of the most relevant aspects of the particle-position-
based PFEM. More details about this formulation are given in Avancini et al. [14]. This uses a partially updated
Lagrangian description, taking the previous time step equilibrium configuration of the continuum as reference. Let
Ωr be the fluid domain in the reference configuration at instant tn < tn+1. Where the subscript r refers to reference
configuration. The reference and current configurations are defined by the coordinates xr and y, respectively. The
deformation gradient tensor Fr is then defined as:

Fr = ∇xr
y (1)

The governing equations are the momentum and mass conservation, with the latter can be expressed in terms
of the Jacobian determinant (Jr = |Fr|), which represents the volumetric change of an infinitesimal element
relative to its reference volume. Under the assumption of fully incompressible flow, the Jacobian equals one.
Therefore, these equations in the reference configuration can be written as:

ρÿ −∇xr
·
(
SFT

r

)
− br = 0 (2)

Jr − 1 = 0 (3)

where ρ is the fluid density, ÿ is the material derivative of fluid velocity, S is the second Piola-Kirchhoff stress
tensor, and br is the body force vector.

The governing equations are complemented by the boundary conditions, expressed as:

y = yD on ΓD (4)
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(
SFT

r

)
nr = hr on ΓN (5)

where yD are the positions prescribed at the Dirichlet boundary (ΓD), hr are the tractions precribed at the Neu-
mann boundary (ΓN ), and nr is the normal vector to ΓN .

2.1 Constitutive law

The Cauchy stress, defined in the current configuration Ω, is given by:

σ = τ − pI (6)

where τ is the deviatoric stress tensor, p is the pressure, and I is the identity tensor.
Following Bingham model, the deviatoric stress tensor is given by:

τ = 2µ̃ε̇ = 2

(
µp +

τ0
∥ε̇∥

)
ε̇ if ∥ε̇∥ ≠ 0 (7)

∥τ∥ ≤ τ0 if ∥ε̇∥ = 0 (8)

where µ̃ is the apparent viscosity, µp is the plastic viscosity, τ0 is the yield stress and ∥ε̇∥ is the equivalent strain
rate which is calculated as follows:

∥ε̇∥ =
√
2ε̇ : ε̇ (9)

and the strain rate tensor is given by:

ε̇ =
1

2

(
∇T

y ẏ +∇yẏ
)

(10)

where ẏ is the velocity vector.
When the equivalent strain rate tends to zero, from eq. (7), the apparent viscosity tends to infinity, which

induces numerical difficulties. To avoid this, regularization techniques, such as the one proposed by Papanastasiou
[27] and adopted in the present work, that regularize the constitutive law yielding a single expression:

τ = 2

(
µp +

τ0
∥ε̇∥

(
1− e−m∥ε̇∥

))
ε̇ (11)

where m is a regularization parameter. The higher m value, the better it approximates the original Bingham model;
in this present work, it is set to 1000.

The deviatoric stress tensor can be written as the double contraction between an Eulerian constitutive tensor
and the Eulerian strain rate tensor as:

τ = D : ε̇ (12)

with D being a 4th order consitutive of components:

Dijkl =

(
µp +

τ0
∥ε̇∥

(
1− e−m∥ε̇∥

))
(δikδjl + δilδjk) , (13)

with δ denoting the Kronecker delta.
Since the formulation occurs in the reference configuration, which is the last state of equilibrium, the consti-

tutive law needs to be expressed in this reference. Consequently, we use the second Piola-Kirchhoff stress tensor
and the Green-Lagrange strain rate tensor, which are defined as follows, respectively:

S = JrF
−1
r σF−T

r (14)

Ėr =
1

2
(ḞT

r Fr + FT
r Ḟr) (15)

where Ḟr is the rate of the deformation gradient.
By expressing the Eulerian strain rate in terms of the Green-Lagrange strain rate and substituting the eq. (6)

into the eq. (14), we obtain:

S = JrF
−1
r

(
D : (F−T

r ĖrF
−1
r )

)
F−T

r − pJrC
−1
r = Dr : Ėr − pJrC

−1
r (16)

where Dr is the 4th-order constitutive tensor in the reference configuration. This tensor can be calculated by
applying a pull-back operation to the tensor defined in the current configuration Ω. Thus, we have in indicial
notation:

(Dr)ijkl = Jr
(
F−1
r

)
ia

(
F−1
r

)
jb

(
F−1
r

)
kc

(
F−1
r

)
ld
Dabcd (17)
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3 Position-based finite element method

The procedure for obtaining the discrete finite element equation follows the procedure presented by Avancini
et al. [14], which is based on the stationary energy principle taking the particle positions and nodal pressures as
variational parameters.

The PFEM approach demands linear shape function for the approximation of both pressure and posistions.
As a consequence, the Ladyzhenskaya-Babuska-Brezzi (LBB) conditions [28–30] are not satisfied, which can lead
to spurious pressure solutions and numerical instability problems. To address this issue, the formulation employs
the Pressure-Stabilized Petrov-Galerkin [31, 32], which constis of adding to the weak form, the residual of the
momentum equation weighted by the gradient of the pressure test function multiplied by a stabilizing parameter.

The time integration is carried out through the generalized-α method, proposed by Chung and Hulbert [33],
which is implicit and second-order accurate. It is unconditionally stable and allows for the control of numerical
dissipation at high frequencies. The equilibrium is considered at an intermediate time tn+α, where the acceleration
is interpolated at tn+αm

, while the velocity and positions are interpolated at tn+αf
. Velocity and acceleration at

the current step tn+1 are firstly computed using Newmark approximations, and then used for the interpolation at
tn+α. The parameters αm and αf , are determined as a function of the chosen spectral radius ρ∞ (see Jansen et al.
[34]), as shown in eq. (18) and eq. (19), allowing control over the dissipation at high frequencies. Additionally, the
Newmark parameters β and γ are derived from αm and αf to ensure second order accuracy.

αm =
1

2

(
3− ρ∞
1 + ρ∞

)
(18)

and
αf =

1

1 + ρ∞
, (19)

where 0 ≤ ρ∞ ≤ 1, resulting maximum high frequency dissipation for ρ∞ = 0 and minimum dissipation for
ρ∞ = 1.

Ommiting the details of the discretization process, the fully discrete finite step problem is given by:

∂Πn+α

∂(ya)n+α
=

∫
Ωr

ρrNaÿ
h
n+αdΩr +

∫
Ωr

(Ėh
r )n+α : (Dh

r )n+α :
∂(Eh

r )n+α

∂(ya)n+α
dΩr

−
∫
Ωr

phn+1

∂(Jh
r )n+α

∂(ya)n+α
dΩr −

∫
Ωr

NabrdΩr −
∫
Γr

NahrdΓr = 0,

(20)

∂Πn+α

∂(pa)n+1
+ (Rs)n+α =−

∫
Ωr

Na((J
h
r )n+α − 1)dΩr +

∫
Ωr

τPSPG
1

ρr
(Fh

r )
−T
n+α∇xr

Na ·
[

ρrÿ
h
n+α −∇xr

·
(
(Sh)n+α(F

h
r )

T
n+α

)
− br

]
dΩr = 0.

(21)

where Π is the energy functional, the index a represents the sum over element nodes (particles) a, the superscript h
indicates an interpolated variable associated with the finite element discretization, Na is the shape function relate
to the node a, the index n + α represents the intermediate time, phn+1 is the pressure interpolated in the current
time, τPSPG is the stabilization parameter, and Rs is the residual of the incompressibility condition.

The nonlinear system defined by eq. (20) and eq. (21) is solved iteratively using Newton-Raphson method,
by recurrence of: ∂

∂(yb)n+1

(
∂Πn+α

∂(ya)n+α

)
∂

∂(pb)n+1

(
∂Πn+α

∂(ya)n+α

)
∂

∂(yb)n+1

(
∂Πn+α

∂(pa)n+1
+ (Rs)n+α

)
∂

∂(pb)n+1
(Rs)n+α

k

·

∆yb

∆pb


k

= −

 − ∂Πn+α

∂(ya)n+α

∂Πn+α

∂(pa)n+1
+ (Rs)n+α


k

. (22)

where the superscript k denotes the iteration number, ∆yb and ∆pb are the position and pressure increments of a
node b, and right side vectors are the residual vectors of node a. The criterion for solution convergence is based on
the norm of the increments in position and pressure, which must be smaller than a predefined tolerance.

4 Particle finite element method

This work employs the classical Particle Finite Element Method (PFEM) as outlined by Idelsohn et al. [10].
The procedure begins by discretizing the fluid domain using particles. Delaunay triangulation is then applied to
generate a convex mesh from these particles, utilizing the open-source library Tetgen (see Si [35]) for 3D analyses.
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Subsequently, the α-shape method, as described by Edelsbrunner and Mücke [36], removes excessively distorted
or large elements with re > αehe, where re is the element’s circumscribed radius, αe is a user-defined parameter,
and he is the element’s characteristic length. This last procedure defines the boundary of the domain.

The discretized equations (eq. (20) and eq. (21)) are solved to determine the configuration at time t + 1. If
elements are highly distorted, remeshing is performed to regenerate the mesh while preserving nodal values. To
maintain mesh quality, nodes are relocated if an element’s edge length is below 0.6 times the characteristic length,
or if the cosine of the angles between tetrahedron faces exceeds 0.99.

5 Numerical study

The proposed methodology was validated using experimental and numerical results from a slump-flow test of
fresh concrete, from the studies by Cremonesi et al. [18] and Franci and Zhang [17]. In this test, a truncated cone
is filled with fresh concrete. Then, it lifted, and the concrete flow starts onto a base plate, by the action of gravity.
The evolution on time of the spreading diameter was obtained with a 4c-rheometer (see Thrane et al. [37]).

The geometry of the simulation consists of a three-dimensional concrete volume with a truncated cone shape,
having a diameter of 0.1 m at the top, 0.2 m at the bottom, and a height of 0.3 m. This volume rests on a base with
a diameter of 0.7 m. Regarding the boundary conditions, there is no slip between the concrete and the base, and
the base is fixed in all directions. An external body force, equals to ρrg, is applied, with gravity being 9.81m/s2

in the vertical direction of the cone. The outer surfaces of the concrete are free to move. Additionally, the material
properties are ρ = 2200.0 kg/m3, µp = 255.0 Pa.s, τ0 = 32.0 Pa.

Regarding the numerical aspects, a spectral radius of 0.8, an α-shape parameter of 1.35, a time step of 0.005s,
and a total of 8000 steps, totaling 40s of simulation, were set. The simulation mesh consists of 60042 tetrahedral
elements, compared to the 54464 elements in the mesh presented by Franci and Zhang [17]. Figure 1 compares
the velocity contours over the deformed configuration at t = 5.0s from Franci and Zhang [17] and the present
work, showing qualitative agreement. Figure 2 shows the time evolution of the spreading diameter from numerical
and experimental results. The numerical results align well with the experimental data and improve upon those by
Franci and Zhang [17], demonstrating the effectiveness of the proposed methodology.

Figure 1. Comparison of velocity contours plotted over the deformed configuration at t = 5.0s by Franci and
Zhang [17] and the present work; units are in m/s

6 Conclusions

The methodology to extend the application of the particle-position-based PFEM formulation to incompress-
ible non-Newtonian fluids was presented. The implementation was tested using a numerical example of a slump-
flow test of fresh concrete, showing good agreement with experimental data and an improvement over previous
numerical results. Further investigation is needed to assess the robustness and accuracy of the methodology in other
examples. The authors are also interested in implementing other viscoplastic models, such as the Herschel-Bulkley
model, which more accurately represent the behavior of fresh concrete.
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Figure 2. Evolution on time of the spreading diameter from numerical and experimental results
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