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Abstract. Three-dimensional concrete printing (3DCP) has emerged as a promising manufacturing technique in
the civil engineering sector, offering myriad advantages over traditional construction methods. Despite its potential,
challenges persist in optimizing the manufacturing stage of 3DCP, including determining optimal fresh concrete
rheology, layer thickness, print path, and nozzle characteristics. In this study, we incorporate the Discrete Fresh
Concrete model (DFC) into our Discrete Element Method (DEM) code to simulate the rheological behavior of
fresh printable concrete during printing, aiming to explore a comprehensive range of process parameters and their
combinations to enhance understanding and optimization 3DCP process. Through a series of simulations, we
systematically vary some of the process variables such as concrete mix design, nozzle specifications, and printing
speed to investigate their influence on the printed output quality. By the obtained results, we aim to identify the
key parameters that significantly affect the process, offering insights for refining 3DCP technologies and helping
guide their development. We believe methodologies of the type shown here may be an efficient tool for advancing
3DCP technologies.
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1 Introduction

Additive manufacturing, or 3D printing, has recently become a revolutionary technology with broad appli-
cations. One recent application of additive manufacturing is in civil construction, offering numerous advantages
over traditional methods. By automating manual processes, concrete 3D printing enhances efficiency and allows
for complex structures that are difficult or impossible to create manually, reducing errors and rework. It also pro-
motes sustainability by using materials more efficiently and reducing waste, with the added benefit of incorporating
sustainable or recycled materials to reduce environmental impact. Additionally, 3D printing significantly reduces
construction time as it operates continuously, accelerating project completion and lowering operational costs. The
precision of 3D printing ensures effective material use, resulting in substantial material savings. Finally, 3D print-
ing provides almost unlimited flexibility in architectural design, enabling the creation of complex geometries that
are customized to specific project needs. However, there are still some uncertainties and technological challenges
that need to be addressed before 3DCP can be widely adopted in the construction industry, including: (i) current
3D printing technologies require improved materials in order to reach their full potential; (ii) concrete rheolog-
ical characteristics need to be considered when developing new 3D printing technologies; and (iii) the required
pumping and extrusion pressure during the 3DCP process.

To address the challenges associated with 3DCP, numerical simulation may be an effective tool. Considering
that fresh concrete has a rather discrete (and two-phase) nature at the level of coarse aggregates, the discrete
element method (DEM) stands as a natural approach. First introduced by Cundall in the 1970s [1, 2] and further
refined by Cundall and Strack [3], DEM can be understood as a model for the representation and study of granular

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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materials. It proposes numerically solving the differential equations of motion for systems composed of a large
number of rigid solids (”discrete elements” or ”particles”) [4]. In DEM simulations, these individual particles are
treated as discrete entities, and their interactions are governed by simple mechanical laws, such as contact forces,
frictional forces, and others. By tracking the motion of each (and all) individual particles and considering their
interactions, DEM provides valuable insights into complex phenomena at any desired time instant. This includes
individual particle trajectories, forces interacting, interactions among neighboring particles, and many other factors
that are challenging to obtain through experimental techniques.

This article presents an approach that combines the DEM formulation for modeling particle dynamics with the
DFC model equations to account for particle-particle and particle-wall interactions in fresh printable concrete. The
DFC model, introduced by Cusatis and Ramyar [5], is based on stress-strain relationships to represent the contact
interactions, and, when used in the DEM framework, provides an accurate description of the interactions among
coarse aggregate particles within a fine mortar matrix. They idealize each particle as spheres with two phases:
(i) a rigid inner sphere (representing the aggregate) and (ii) a soft outer layer, covering the first (representing the
mortar), with a known thickness. Our approach adopts the DEM formulation developed by Campello [4, 6, 7] and
Quintana-Ruiz and Campello [8] for the mechanical part of the problem.

2 Methodology

In this work we incorporate the DFC model, developed by Cusatis and Ramyar [5], to describe contact
between particles (and between particle and wall) in our in-house DEM code. Our main objective is to simulate
the rheological behavior of fresh concrete for 3D concrete printing.

2.1 Particle’s Dynamics

In this study, we adopt a Lagrangian DEM description. Let us consider a system of NP spherical ”biphasic”
particles, consisting of a rigid inner sphere covered by a thin layer of soft mortar on the outside, each characterized
with essential properties, including mass mi, radius Ri, aggregate radius ri, mortar thickness hi (Fig. 1) and
rotation inertia ji (relative to particle’s center). To mathematically describe their motion, we represent the position
vector of each particle as xi, the velocity vector as vi, the incremental rotation vector as α∆

i (rotation vector relative
to two consecutive configurations) and the spin vector as ωi. Following classical dynamics (Newton-Euler), the
equations of motion for the ith particle are

miv̇i = f con
i + fenv

i ,

jiω̇i = mcon
i ,

(1)

where f con
i are the forces due to mechanical contacts with other particles or walls and fenv

i are the forces due to
the environment (in this study, we take only the gravitational contribution mig, where g is the gravity acceleration
vector). Still in eq. (1), mcon

i are the moments induced by the contact forces and ji is usually a matrix called
inertia moment of the particle i around its axis of rotation. The moment of inertia represents the resistance of the
particle to changes in its rotation motion. For a solid, homogeneus sphere of mass m and radius R, the moment of
inertia is given by:

ji =
2

5
mR2. (2)

It is important to mention that there are works in the literature that incorporate additional forces into the model,
such as adhesive and drag forces, among others [4, 6–8]. Mechanical contacts forces acting on a particle i due
to contact with N c

i other particles or walls, f con
i , include both the normal component f con,n

i and the tangential
component f con,t

i (i.e., friction forces), given by 3.

f con
i =

Nc
i∑

j=1

(f con,n
ij + f con,t

ij )

f con,n
ij = −4

3

√
r∗E∗δ

3/2
ij nij − dcon,nδ̇ijnij , f con,t

ij = −(kcon,t∆xtrial
ij + dcon,tvij),

(3)

where

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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r∗ =
rirj

ri + rj
E∗ =

EiEj

Ej(1− ν2i ) + Ei(1− ν2j )
nij =

xj − xi

||xj − xi||
, (4)

where r∗ and E∗ are the effective radius and effective elasticity modulus of particle pair i − j (with Ei and νi
the elasticity modulus and Poisson coefficient of particle i and the Ej and νj the elasticity modulus and Poisson
coefficient of particle j), respectively; nij is the unit vector that points from the center of particle i to center of
particle j; and δ̇ij is the overlap velocity of the pair. Still in eq. (3), δij is the overlap between particles and dcon,n

is the damping constant, which are given by

δij = ||xi − xj || − ri + rj ,

dcon,n = 2ξcon,n
√
2E∗m∗

√
r∗δ

1/4
ij with m∗ =

mimj

mi +mj
,

(5)

where ξcon,n is the damping rate and m∗ is the effective mass of pair i− j. For the tangential components f con,t
i ,

we determined them through trials following the Coulomb model. In 3, kcon,t is the spring stiffness, dcon,t is
the damping constant of the tangential force, ∆xtrial

ij is the trial tangential elongation, and vij is the elongation
velocity.

Friction forces are not central forces, meaning they have an eccentricity relative to the centers of mass of the
particles on which they act. Consequently, these particles undergo rotational motion, which affects their overall
movement. The resultant of the moments due to the friction forces acting on a particle i, resulting from contacts
with ncon

i other particles, is given by

mfric
i =

ncon
i∑

j=1

mfric
ij with mfric

ij = rPi × f con,t
ij , (6)

where mfric
ij is the moment induced in a particle i due to the friction force with another particle j, and rP is the

vector connecting the center of particle i with the contact point P .
This section shows how the conventional DEM works (for more details, see Campello [4, 6, 7] and Quintana-

Ruiz and Campello [8]). For modeling the fresh concrete past the contact model from eq. (3) to eq. (6) will be
replaced by a model based on constitutive equations, which is the Discrete Fresh Concrete (DFC).

2.2 Discrete Fresh Concrete (DFC)

The DFC model uses DEM principles with stress-strain relationships to more accurately represent the behav-
ior of fresh concrete. The model represents each particle as a biphasic element, consisting of a rigid inner sphere
with radius ri representing the aggregate, and a thin outer soft layer hi representingthe mortar (see Fig. 1a) . Thus,
the contact between two particles can be: (i) mortar-mortar, when the distance between their centers is greater than
the so-called equilibrium configuration (Lij0 = ri + rj + hi); (ii) mortar-aggregate, when the distance between
the centers is less than Lij0 but greater than the sum of the aggregate radii ri and rj ; (iii) aggregate-aggregate,
when the distance between the centers is equal to or less than the sum of the aggregate radii.

Specifically, the model is designed to accurately represent mortar-to-mortar contact, i.e., between the outer
layers of each particle. As a result, the equations of motion (eq. (1)) for the ith particle can be reformulated as

miv̇i = fdfc
i + fenv

i jiω̇i = mdfc
i , (7)

where fdfc
i are the forces on particle i due to mechanical contact with other particles (or between particle and

wall), fenv
i are the forces on particle i due to the environment that may arise from the possible existence of

gravitational, electric and/or magnetic fields, mdfc
i are the moments on particle i induced by other particles or

walls. The calculation of the forces and moments acting on the particle due to its interactions with other particles
and walls are

fdfc
i =

∑
j

Aijσij mdfc
i =

∑
j

Aij(ai × σij) (8)
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where σij is the contact stress on particle i at the contact point with particle j and ai is the vector from the center
of particle i to the contact area center, Aij in Fig. 1b. The contact area Aij is given by Aij = π(Hij)

2.
Given that particles are spherical, the contact area formed between two particles or between a particle and a

wall can be modeled as a circle with radius Hij , which is calculated from sheer geometrical arguments as follows:

Hij =
√

(Ri)2 − (ai)2 and ai =
(Ri)

2 − (Rj)
2 + (Lij)

2

2Lij
, (9)

where ai is the distance from the center of particle i to the contact area center and Lij is the distance between the
center of particle i and j (or object) and can be calculates as Lij = ||xj − xi||.

Still in eq. (8), to calculate σij and ai, it is necessary to establish a local Cartesian reference system, Fig. 1c.
This reference system is based on the motion of particles i and j according to the classical Lagrangian formulation.
The unit vector eijN is oriented along the line segment connecting the center of the two particles, which is calculated
as follows:

eijN =
xj − xi

Lij
. (10)

To fully establish the local Cartesian reference system, the unit vector eijM is calculated using the direction
of the relative tangential velocity between the particle i and j (or object) at the point of contact vP

rel,t, and the unit
vector eijL , in turn, is oriented as to form a right-handed coordinate system. The unit vectors eijM and eijL are given
by

eijM = ||vP
rel,t − (vP

rel,t · e
ij
N )eijN ||, eijL = eijN × eijM . (11)

where, vP
rel,t is calculated from the relative velocity at contact point vP

rel, which are given by

vP
rel,t = vP

rel − (vP
rel · e

ij
N )eijN , vP

rel = vj + ωj × aj − vi + ωi × ai, (12)

Given the distance ai, the vector ai is calculated as ai = aie
ij
N .

(a) (b) (c)

Figure 1. (a) representation of a generic particle in the DFC model (b) general configuration of two interacting
particle; (c) local Cartesian reference system

In the DFC model, σij is the sum of a stiffness stresses σs with a viscous stresses σv , which are given by

σij = σs + σv with, σs =


σNs

σMs

σLs

 and σv =


σNv

σMv

σLv

 (13)
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where, to calculate σs and σv we consider the current configuration of the particle pair, which is defined by the
relative position between them. In a generic configuration (Fig. 1a), the contact between two particles begins when
Lij < ri + rj +2h and the equilibrium is configured when Lij = Lij0 = ri + rj +h, where h is the mortar layer.
Which means that, when two particles are in contact and Lij > Lij0, they are in tension (and we called it soft
contact) and this is the case when particles are with attractive forces. Similarly, when Lij < Lij0 and Lij > ri+rj ,
compression appears (also called it soft contact), causing repulsive forces. In addition, when Lij = Lij0, we are
in zero (or neutral) configuration, and then no force is applied. Finally, when Lij = ri + rj , the aggregates of
particles i and j are in contact (and we called it hard contact). When in tension (Lij > Lij0) or compression, i.e.
soft contact, (Lij < Lij0 and Lij > ri + rj), σs and σv are

σs =


ENmεijN

0

0

 σv =


βη(γ̇)ε̇ijN

η(γ̇)ε̇ijM

η(γ̇)ε̇ijL

 , (14)

otherwise, when hard contact develops, i.e. Lij = ri + rj , σs and σv are

σs =


ENaε

ij
N

αaENaε
ij
M

αaENaε
ij
L

 σv =


βη(γ̇)ε̇ijN

η(γ̇)ε̇ijM

η(γ̇)ε̇ijL

 , (15)

where ENm is the mortar normal elastic modulus, ENa is the aggregate normal elastic modulus, αa is the normal-
shear coupling parameter and

ε̇ijN =
vP

rel · e
ij
N

Lij
, ε̇ijM =

vP
rel · e

ij
M

Lij
, ε̇ijL =

vP
rel · e

ij
L

Lij
, (16)

are the strain rates in directions N, M and L. Still in eq. (14) and eq. (15), η(γ̇) is the mortar’s apparent viscosity,
which is given by

η(γ̇) = η0 = κ0η∞ if γ̇ ≤ γ̇0

η(γ̇) = η∞|γ̇|n−1 if γ̇0 < γ̇
(17)

and

γ̇ =
√

βε̇2N + ε̇2M + ε̇2L and γ̇0 = στ0/η0 (18)

where στ0 is the shear yield stress, κ0 = 100 is a penalty constant, η∞ is the mortar plastic viscosity and n refers
to Newtonian (n = 1), shear-thickening (n > 1), and shear-thinning (n < 1) flow.

The interaction between particle and surfaces, considers any surface as padded and characterized by a thick-
ness p. The interaction between particle and surface is identical to the particle-particle model. The differences in
this case are: (i) the center to center distance Lij is replaced by the shortest distance between particle and surface;
(ii) the zero-configuration becomes L0 = ri+h/2+p; and (iii) the distance of particle i from the center of contact
area becomes ai = Lij−p. For more comprehensive details of the DFC formulation, readers may refer to (Cusatis
and Ramyar) [5].

3 Numerical Solution Scheme

To solve the mechanical problem, we integrate the governing equations (eq. (8)) numerically by means of
an explicit (forward Euler) scheme. We obtain the values of position, velocity, spin and incremental rotations at
time ti+1 based on the known values at time ti. Then we increment the time by ∆t and transfer the information
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from i + 1 to i (i ←− i + 1). Subsequently, the procedure is repeated until the final simulation time tF is reached.
The eq. (19), eq. (20), eq. (21) and eq. (22) represent the calculation of the particle’s velocity, spin, position, and
incremental rotation at time ti+1, respectively.

vi(t+∆t) = vi(t) +
1

mi

∫ t+∆t

t

(fdfc
i + fenv

i )dt ≈ vi(t) +
∆t

mi
[fdfc

i (t) + fenv
i (t)], (19)

ωi(t+∆t) = ωi(t) +
1

ji

∫ t+∆t

t

(mdfc
i )dt ≈ ωi(t) +

∆t

ji
[mdfc

i (t)], (20)

xi(t+∆t) = xi(t) + vi(t+∆t)∆t, (21)

α∆
i (t+∆t) = ωi(t+∆t)∆t. (22)

The solution process can be schematically seen in the following algorithm:

Solution Algorithm
Step 1 Initialize time variables and get initial conditions:

t = 0, ∆t = given

xi(0), vi(0), ωi(0), αi(0) = given (i = 1, . . . , Np)

Step 2 While t ≤ tfinal, loop over all particles: For i = 1, . . . , Np Do

Compute forces and moments at time t via eq. (8)

Update velocity, spin, position, and incremental rotation vectors:

vi(t+∆t) = vi(t) +
∆t
mi

[fdfc
i (t) + fenv

i (t)],

ωi(t+∆t) = ωi(t) +
∆t
ji
[mdfc

i (t)],

xi(t+∆t) = xi(t) + vi(t+∆t)∆t,

α∆
i (t+∆t) = ωi(t+∆t)∆t

Save updated variables:

vi(t)←− vi(t+∆t),

ωi(t)←− ωi(t+∆t),

xi(t)←− xi(t+∆t),

αi(t)←− αi(t+∆t),

t←− t+∆t

End do

4 Results

To investigate the ability of the DFC model to simulate a 3D printing process, Figure 2a presents the attempts
to print with varying printing speeds. In all simulations, the average radius of the aggregates is r = 2mm and the
mortar thickness is h = 1mm, with ENm = 50KPa, N∞ = 50Pa.s, and στ0 = 500Pa. The nozzle featured
a rectangular cross-section with dimensions of 30 × 15mm, and simulations were conducted with nozzle speeds
ranging from 6 to 20 cm/s, deposition speed with 7 cm/s and ∆t = 2×10−5 . As shown in Figure 2b, when nozzle
speed are 6 and 8 cm/s, the deposition is quite consistent and has good resolution. However, at higher speeds, we
observe filament rupture, which becomes progressively more pronounced as the nozzle speed increases.
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(a) (b)

Figure 2. (a) 3D concrete printing. (b) 3D concrete printing with varying nozzle speed

5 Conclusions

In conclusion, this work presents an approach that combines the Discrete Element Method (DEM) with the
DFC model for modelling fresh printable concrete, in an attempt to simulate 3D Concrete Printing (3DCP). The
DFC model can be considered a useful numerical tool for modeling printable concrete deposition, as it can be used
to simulate the printability of concrete in an additive manufacturing process. The computational implementation of
the model is fairly straightforward and enables a quick simulation tool for qualitative process design and analysis.
We believe it can be beneficial for engineers and analysts in the field, helping to evaluate the overall process
response under varying parameters. General trends can be identified, and what-if scenarios can be explored at a
reasonable computational cost and model complexity. New simulations are underway, considering the printing of
multiple layers and more complex geometric shapes.
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