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Abstract. This work presents results from a recently developed three-dimensional immersed boundary technique 
for modeling 3D particle-laden fluid problems. A classical Eulerian approach is followed to describe the fluid 
(assumed here as incompressible through Navier-Stokes equations). A discrete element formulation, in turn, is 
used to describe the particles´ dynamics. The fluid-particle interfaces are treated through Nitsche´s method, which 
is an immersed boundary technique whereby we impose the particles´ surface velocities and spins as boundary 
conditions to the fluid in a weak form. In order to assess the accuracy and efficiency of the developed scheme, 
numerical simulations of 3D unsteady flow of an incompressible fluid loaded with particles are performed and 
compared against benchmark solutions. This work refers to an intermediate stage of a scientific research that aims 
to model problems of fluid-particle interaction (FPI) with full particle-to-particle contacts in particle-laden fluids. 
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1  Introduction 

The fluid-particle interaction (FPI) subject has great importance in human activities, and it is observed in 
many phenomena and engineering applications (see e.g. Avci and Wriggers [1] and Johnson and Tezduyar [2]). 
Basically, if we restrict to numerical point of view, the fluid-particle interface can be handled into two major 
groups namely, coincident boundary method (see e.g. Donea et al. [3]) and the so-called immersed boundary 
methods (see Benk, Ulbrich and Mehl [4]).  

This work uses the immersed boundary technique to exchange information between these two domains in 
which, essentially, it considers that the fluid and particle grids are totally independent of each other and overlapped. 
This works also presents a methodology to simulate the FPI in three-dimensional (3D) space considering the 
evaluation of the fluid-dynamic forces according to Müller, Campello and Gomes [5] for incompressible fluid 
flows governed by Navier-Stokes equations. The fluid is defined as an Eulerian description and its discretization 
is done by a mixed finite element formulation (FEM) within a standard Galerkin framework. The Ladyzhenskaya–
Babuška–Brezzi (LBB) compatibility condition (see e.g. Wieners [6] and Bruman and Fernández [7]) is satisfied 
by using Taylor-Hood tetrahedral elements (Taylor and Hood [8]). The numerical instability, due the convective-
dominated problems, is avoided by considering low to moderate Reynold number even though the Streamline-
Upwind Petrov–Galerkin (SUPG) technique is implemented in our code, but we prefer not to introduce this 
additional complexity here as to keep the focus of the work on the methodology for computation of the FPI. 
Newmark scheme (Newmark [9])  is adopted for the time integration technique. This is combined with the 
Lagrangian Discrete Element Method (DEM) for the particle, in our case, spherical particle. The fluid-dynamic 
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forces and moments represents the influence of the fluid on the motion of the particle and imposed on the latter in 
a coupled, iterative way. In turn, the influence of the particle on the fluid is considered as a fluid-particle interface 
problem arising due the use of immersed boundary technique, where the fluid boundary conditions over the particle 
interface are imposed through Nitsche´ method (Nitsche [10]). An explicit and iterative coupled FEM-DEM 
scheme is developed to achieve convergence within each time step of the solution process. Finally, we present 
Combined Continuum and Discrete Model (CCDM) to validate the method and illustrate its potentialities to the 
modeling of particle-laden fluid problems.  

This work reports only partial results from broader research, in which we are developing a numerical 
framework to deal with 3D FPI problems in particle-laden fluid flows where the particle-to-wall (i.e., fluid´s 
exterior solid boundaries) and particle-particle contacts are fully permitted and resolved. 

2  The fluid problem 

Considering an incompressible viscous fluid governed by Navier-Stokes equations for steady-state problems, 
we have 

   div in ,    u u T b    (1) 

 div in 0 ,u     (2) 

where (1) is the well-known conservation of linear momentum of a material point of the fluid and (2) follows from 
the mass conservation principle. Above, , , u T  and b  are the fluid’s density, velocity field, Cauchy stress field 
and volumetric force per unit mass, respectively, with   as the problem domain. For an Eulerian description and 
a Newtonian constitutive law for the fluid, the following system arises from (1) and (2): 
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where   is the fluid’s kinematic viscosity, s u  is the (symmetric) strain rate tensor and p  the fluid’s kinematic 
pressure. Vector n  stands for the unit outward normal to the boundary  , and andu  t  are the prescribed traction 
and velocity vectors, respectively, on the portions u  and t  of  . The third and fourth expressions of (3) 
represent the boundary conditions of Dirichlet (essential) and Neumann (natural) types, respectively. 

The weak form of  (3) reads 

            div div; , , , , , , , ,
t

c a p q q          u w u w u w u w t w b   w   (4) 

where w  and q  are arbitrary test functions for the velocity and pressure fields, respectively. The trilinear and 
bilinear forms of the convective and viscous terms above are 

        and  ; , , : .c d a d  
        u w u w u u w u w u   (5) 

2.1 Time and spatial discretization 

In temporal discretization, the time variable is discretized into time instants nt , separated by intervals t , 
such that 1n nt t t     is the time instant immediately after nt . We adopted the Newmark scheme (Newmark 
[9]) as a numerical method to integrate eq. (4) in time. In this scheme, the acceleration of the fluid at time 1nt   
can be expressed as 
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where   is the Newmark´s integration parameter, and where superscript notation is adopted to denote the time 
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instant at which the corresponding variable is referred to. Here, we use 1 2   in order to archive second-order 
accuracy in the integration. 

For spatial discretization, a standard mixed finite element scheme is applied where the velocity and pressure 
fields are the primitive variables of the problem and the fluid´s domain is discretized with Taylor-Hood tetrahedral 
elements (see Taylor and Hood [8]). Such elements use quadratic shape functions for the velocity field and linear 
shape functions for the pressure field, therewith overcoming numerical instabilities (they fulfill the LBB 
compatibility condition). Accordingly, the finite element approximation can be written as 
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where uN  and pN  are matrices that contain the element´s shape functions of the velocity and pressure fields, 
respectively, and eu  and ep  are the vectors that collect the element´s nodal degrees of freedom. Inserting eqs. (6) 
and (7) into the weak form (4), and performing some algebra, we arrive at the discrete weak form of the fluid 
problem, which in matrix form is given by 
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where M , C , K , G  and TG  are the mass, convective, viscous, gradient operator and divergent operator 
matrices, respectively. Still in (8), 1nf  is the vector that contains the field forces and boundary conditions. The 
system of equations (8) is non-linear due to the convective term, and its solution is achieved using a consistent 
Newton-Raphson scheme for which full quadratic convergence is ensured. For more details about its numerical 
derivation and implementation, the interested reader is referred to Müller et al. [11] (the two-dimensional version 
may be found in Gomes and Pimenta [12]). 

3  The particle problem 

The motion of the discrete solid particles follows a Lagrangian description here. We assume the particles are 
spherical. Any deformation they experience is presumed to be very small and localized, therefore they can be 
treated as rigid bodies. The model herein summarized is described in depth in Campello [13] and [14]. Let us 
consider a system of PN  particles, each one with mass im , radius ir  and rotation inertia 22 5( )i i ij m r , with 

1, , .Pi N   The position of a particle will be denoted by vector ix , its velocity by iv  and its spin by iw . The 
rotation vector relative to the beginning of the motion is denoted by i , whereas the incremental rotation vector 
is denoted by i

 . The rotation field here is also parameterized using the Rodrigues rotation vector, instead of the 
classical Euler rotation vector. For a detailed account of the rotation description, we refer the reader to Campello 
[15]. 

From Euler’s laws, the following equations must hold for each particle at every time instant t , 

 tot totand ,i i i i i im j x f w m   (9) 

in which tot
if  is the total force vector acting on the particle and tot

im  the total moment vector concerning the 
particle’s center. The superposed dots denote time differentiation. The total force tot

if  is the sum of the following 
force contributions 

 tot ,fl
i i im f g f  (10) 

where g  is the gravity acceleration vector, fl
if is the fluid dynamic force vector. In the same way, the total moment 

applied on the particle is given by the sum of the following contributions: 

 tot fl
i im m  (11) 

where fl
im  is the moment generated by fluid dynamic force. Detailed expressions for these force and moment 

contributions will not be reported here for conciseness (see Müller, Campello and Gomes [5]). Numerical time 
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integration of eq. (9) provides the particles´ motion. This is done here through the integration algorithm proposed 
in Campello [13], which has both implicit and explicit versions. In this work, we adopt the explicit version only, 
since this work does not consider any sort of particle contact. The integration algorithm will be omitted here. 

4  The fluid-particle interaction problem 

The main idea of this work is to use the embedded interface concept in order to compute the fluid flow 
variables at the fluid-particle interface from an Eulerian fixed mesh. To do so, we resort to the Nitsche’s method 
to enforce the interface constraints (Dirichlet boundary conditions) in a weak sense, for treating the mechanical 
interactions of overlapping meshes, as depicted in Figure 1. One of the greatest advantages of this method is that 
it does not add new degrees of freedom to the system. 

  

Figure 1. Immersed solid in a fluid and the embedded fluid-particle interface. The interface is discretized into 
interface elements as to enable the computations. Superscript i  stands for the particle´s number.  

By applying Nitsche’s method in (4), after some algebra the discrete weak form in matrix form reads 
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where  
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in which h  denotes the local mesh size on the boundary i  (or immersed interface) of particle i , 1  and 2  are 
penalty coefficients. The matrix eA  is the assembling matrix relative to the interface elements of i . The 
interested reader is referred to Benk, Ulbrich and Mehl [4] for more details on the Nitsche’s method applied to the 
Navier-Stokes equations. 

4.1 Coupled FEM-DEM solution scheme 

To compute the time evolution of the system, we follow a time-marching, staggered solution strategy starting 
from given initial and boundary conditions. At every time step the fluid problem treats the particles as fixed in 
space, with given positions, velocities and spins. Upon solving for the fluid unknowns (velocity and pressure), the 
resultant forces and moments on the particles are computed as shown in Müller et al. [5] and passed on the particle 
problem, which is then solved to obtain the particles´ new positions, velocities and spins. The process is then 
repeated for the next time step until a desired simulation time is achieved. The main steps of the algorithm are 
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outlined below: 
1. Initialize time variables and get initial and boundary conditions. 
2. Solve fluid problem at time 1n nt t t     (Newmark integration associated to Newton 

iterations) considering frozen particles. 
3. Compute resultant forces and moment on the particles at time 1nt   through Müller et al. [5]. 
4. Solve particle problem at time 1nt   (generalized trapezoidal rule with fixed-point iterations) 

considering frozen fluid. 
5. Update particle fields: positions, velocities and spins. 
6. Update time: 1n nt t  . 
7. Go to step 2. 

5  3D Particle sedimentation in a fluid 

This example consists of a 3D unsteady fluid-particle interaction. This is a well-known benchmark example 
in which several experimental results and correlation equation are available. The problem consists of evaluate the 
particle´ terminal velocity, as a result from exact balance between gravity and fluid-dynamic forces. Therefore, a 
single spherical particle with diameter  cm5d   is released from rest within a narrow recipient filled up with a 
stagnant fluid, as shown in Figure 2(a). The fluid is governed by the Navier-Stokes equation and its FEM mesh is 
illustrated in Figure 2(b). The Lagrangian mesh is in Figure 2(c). According to Figure 2(a), only the region referring 
to the channel core is well refined to reduce the computational cost. The boundary condition of all faces, unless 
the bottom face, are  1 2 3, , 0.0u u u  . The convergence tolerance used within the Newton-Raphson iterations 
is TOL 610 . Two fluid time steps were analyzed, namely,  s0.005t   and  s0.0025t  . In general, 
the time step of particle is much smaller than that of the fluid. In this case, as there is no collision, the time step of 
both (fluid and particle) would be the same without loss of precision. 

Figure 2. (a) Geometry and analysis parameters of the example 5; (b) Fluid FEM mesh: 158.354 tetrahedral 
elements and 117.330 nodes; (c) Lagrangian mesh: 780 triangular element and 392 nodes. 

Figure 3 shows the results for the time evolution of the velocity field (  s0.005t  ). As we can see, the 
particle velocity, pv , is increasing until it reaches approximately 1.60  m/s. After that, the velocity of the particle 
remains almost the same, characterizing its terminal velocity. We can also note some small transverse 
displacements (y and z directions) along the channel due, between other reasons, the lack of symmetry of the fluid 
mesh and the fluid dynamic force in these directions do not be numerically null. 
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Figure 3. Time evolution of the velocity field. 

Figure 4 depicts the graph of the evolution over time of particle velocity. Note that for both cases
  s0.005t   and  s0.0025t   the terminal velocity of the particle is close to the reference values. 

 

Figure 4. Time evolution of the particle velocity. 

6  Conclusions 

This work presented a summary of a methodology to simulate the 3D FPI problems. A mixed finite element 
formulation of an incompressible fluid flow governed by unsteady Navier-Stokes equation was used, along with 
Nitsche’s method to enforce the Dirichlet boundary conditions in a weak form at the interface. Discrete element 
method is used to represent the physical behavior of the particle.  We showed our first results for 3D simulations 
using such methodology. We find the present results very promising. A detailed report of this methodology and 
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its application to other problems, including particle-wall and particle-particle contacts, are the subject of a paper 
that will be published in a journal in the near future. 
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