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Abstract. Additive construction techniques, such as 3D Concrete Printing (3DCP), offer significant advantages, 

including reduced material waste, optimized construction times, and the ability to create complex shapes. Despite 

advancements, predicting printing results remains challenging. Fresh material properties are crucial, making 

numerical modeling essential for investigating the dynamic aspects of the extrusion process. However, modeling 

3DCP is challenging due to the complex rheological behavior of self-supporting concrete, which exhibits high 

yield stress and high apparent viscosity at low deformation rates. To address these challenges, the Moving Particle 

Semi-Implicit (MPS) method was adopted in the present study to model the flow. Conventional MPS has numerical 

restrictions with highly viscous fluids, requiring very small time steps and resulting in huge processing costs. This 

study uses an implicit algorithm allowing for larger time steps and reduced processing time. Simulations of non-

Newtonian flow between parallel plates were validated using analytical solutions. 3DCP simulations described the 

flow of fresh mortar at different printing speeds and extrusion volumetric fluxes. The cross-sectional shapes of 

extruded layers compared with experimental data showed qualitative agreement, demonstrating the potential of 

the implicit MPS method for modeling 3DCP processes. 
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1  Introduction 

Non-Newtonian flows have many applications in industries like food, civil, and petroleum engineering. The 

challenge lies in understanding their rheology to predict their dynamic behavior accurately. This is especially 

important for 3D Concrete Printing (3DCP), a Material Extrusion-based Additive Manufacturing (AM) technique 

that reduces waste, time, and cost while enhancing design flexibility by allowing the creation of complex, 

customized components used for large-scale projects like walls and facades [1,2].  

3DCP works by extruding concrete through a nozzle to form shapes controlled by a printer or robotic arm. 

This scalable method depends on material properties and rheology [3–6]. The characteristics of the flow in this 

context are incompressible, highly viscous, and free surface. However, current simulation tools are still 

developing, presenting challenges in predicting outcomes [7]. Effective modeling must consider material 

properties, rheology, and dynamic conditions [8,9]. 

This study aims to enhance the understanding of the non-Newtonian fluid behavior in 3DCP using a 

Lagrangian modeling approach. For this purpose, the moving particle semi-implicit (MPS) method will be 

employed to model the incompressible, highly viscous and deformable free-surface non-Newtonian fluid flows. 

MPS's focus on incompressibility ensures more precise simulations of the concrete extrusion process. 



2 

 

CILAMCE-2024 

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Maceió, Brazil, November 11-14, 2024 

 

2  Numerical modeling 

The numerical method employed in this study is based on the Moving Particle Semi-Implicit (MPS) approach, 

first introduced by Koshizuka & Oka [10] for modeling incompressible free-surface flows.  

2.1 Governing equations 

For incompressible flows, using the Lagrangian description, the Navier-Stokes equations of conservation of 

mass and momentum are given, respectively, by: 

𝐷𝜌

𝐷𝑡
= −𝜌∇ · 𝐮 = 0.                                                                       (1) 

𝐷𝐮

𝐷𝑡
= 

1

𝜌
 (−∇𝑃 + ∇ · 𝕋) + 𝐟.                                              (2) 

where 𝜌 is the fluid density, 𝑡 is time, 𝐮 is the velocity vector, 𝑃 is pressure; 𝕋 is the stress tensor, and 𝐟 is 

the vector representing external forces. 

In the momentum conservation equation, the representation of the viscous term is given by the divergence of 

the viscous stress tensor, ∇ · 𝕋, where the viscous stress tensor is given by: 

𝕋 = 2𝜂𝔻 .                                                                          (3) 

where 𝜂 is the apparent viscosity and 𝔻 is the rate of strain tensor, given by: 

𝜂 =
𝜏

γ̇
 .                                                                               (4) 

𝔻 =
1

2
[(∇𝐮) + (∇𝐮)𝐓] .                                                      (5) 

where 𝜏 is the shear stress and γ̇ is the strain rate.  

The strain rate γ̇, for a simple Newtonian fluid, can be expressed as: 

γ̇ = √2𝔻: 𝔻 .                                                                         (6) 

where 𝔻:𝔻 represents the product of the tensor 𝔻. Substituting equation (5) into the above expression, we 

have: 

γ̇ = √
1

2
[(∇𝐮) + (∇𝐮)𝑇]: [(∇𝐮) + (∇𝐮)𝑇].               (7) 

Thus, the strain rate γ̇ is directly related to the velocity gradient ∇𝐮 of the fluid, and the divergence of the 

stress tensor (∇ · 𝕋) can be expressed as: 

∇ ·𝕋 = 2𝔻 · ∇𝜂 + 𝜂∇2𝐮.                                                   (8) 

2.2 Bingham-Papanastasius Model 

Non-Newtonian fluids have a nonlinear relationship between shear stress and deformation rate. Different 

constitutive equations describe these fluids, depending on the fluid type. The Bingham model is one of the well-

known rheological models. This model has a minimum shear stress, called yield stress, that must be exceeded for 

the fluid to flow. The constitutive equation for Bingham fluids is: 

{
𝜏 = 𝜏0 + 𝜇𝑝γ̇, |𝜏| ≥ 𝜏0

γ̇ = 0, |𝜏| < 𝜏0
.                                                    (9) 

where 𝜏0 is the yield stress and 𝜇𝑝 is the plastic viscosity. 

If 𝜏 < 𝜏0 , the fluid does not flow, leading to infinite viscosity. This model also shows a break in the 

deformation field when the stress equals 𝜏0.  

To overcome this problem, Papanastasiou [11] introduced an equation to regularize viscoplastic functions. 



D. S. M. Gomes, M. Rocutan, L. S. Pereira, F. K. Motezuki, L.-Y. Cheng 

CILAMCE-2024 

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Maceió, Brazil, November 11-14, 2024 

 

This equation uses a regularization parameter 𝑚  to create continuous shear stress and viscoplastic viscosity 

functions, applicable to both fluid and solid regions.  

2.3 Moving Particle semi-implicit method 

In the MPS method, spatial differential operators are approximated with discrete differential operators o 

irregular nodes. These are based on a weight function 𝑊𝑖𝑗 that shows the influence of a neighboring particle 𝑗 on 

a particle 𝑖. The weight function originally proposed by Koshizuka & Oka [10] is: 

𝑊𝑖𝑗 = {

𝑟𝑒

‖𝐫𝑖𝑗‖
− 1, ‖𝐫𝑖𝑗‖ ≤ 𝑟𝑒

0               , ‖𝐫𝑖𝑗‖ > 𝑟𝑒
.                                                               (10) 

where 𝑟𝑒  is the effective radius that limits the radius of influence and ‖𝐫𝑖𝑗‖ = ‖𝐫𝑗 − 𝐫𝑖‖  is the distance 

between particles 𝑖 and 𝑗 (Figure 1). 

 

Figure 1: Representation of neighboring particles 𝑗 within the influence region of radius 𝑟𝑒  around a particle 𝑖. 

The original MPS method uses a semi-implicit algorithm to solve the flow equations by splitting each time 

step into predictive and corrective stages. The velocity and position of a fluid particle 𝑖 are predicted explicitly 

using the diffusion terms and external forces from the momentum conservation equation. The formulation is as 

follows: 

𝐮𝑖
∗ = 𝐮𝑖

𝑡 +
Δ𝑡

𝜌
[𝜂〈∇2 𝐮〉𝑖 + 𝜌𝐟]

𝑡 .                                                               (11) 

𝐫𝑖
∗ = 𝐫𝑖

𝑡 + Δ𝑡𝐮𝑖
∗.                                                                         (12) 

where the superscript* refers to the predictive stage. 

The pressure at fluid and wall particles is calculated by solving a linear system using the pressure Poisson 

equation (PPE). This study uses the Time-scale Correction of Particle-level Impulses (TCPI) source term proposed 

by Cheng et al. [12]. 

⟨𝛻2𝑃⟩𝑖
𝑡+𝛥𝑡 −

𝜌

𝛥𝑡2
𝛼𝑐𝑃𝑖

𝑡+𝛥𝑡 = 𝐶𝑠
2 𝜌

𝑙0
2

𝑝𝑛𝑑0−𝑝𝑛𝑑𝑖
𝑡

𝑝𝑛𝑑0
+ 𝐶𝑠

𝜌

𝑙0
⟨𝛻 · 𝐮∗∗⟩𝑖                                                                                         (13) 

Here, 𝑝𝑛𝑑𝑖
𝑡  is the number density of particle 𝑖 at the start of time 𝑡,  𝛼𝑐  is the artificial compressibility 

coefficient, and 𝐶𝑠 is the speed at which perturbations spread. The velocity of fluid particles 𝐮𝑖
𝑡+Δ𝑡 is updated using 

the pressure gradient term from momentum conservation, and the new positions 𝐫𝑖
𝑡+Δ𝑡 are obtained. 

In the present work, we are developing an implicit formulation that involves the apparent viscosity term, its 

gradient, and deformation, utilizing previously calculated velocity, and the velocity Laplacian term, solved 

implicitly. 

𝐮𝑖
∗ −

Δ𝑡

𝜌
[𝜂𝑡  〈∇2 𝐮〉𝑖

∗] = 𝐮𝑖
𝑡 +

Δ𝑡

𝜌
[2𝔻∇ · 𝜂𝑡 + 𝜌𝐟]𝑡.                                                    (14) 

where 𝐮𝑖
𝑡  and 𝜂𝑡 represent the velocity of particle 𝑖 and the apparent viscosity calculated from the values 

obtained at the previous time step. In the present study, the term with the gradient of the apparent viscosity was 

disregarded. 
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3  Validation and tests   

3.1 Flow between two parallel flat plates 

This case examines the 2D flow between two parallel plates caused by a constant acceleration force acting 

parallel to the plates in the x-direction (left to right). The acceleration field's magnitude is determined by the 

momentum conservation equation. The geometry and boundary conditions of this setup is illustrated in Figure 2. 

The computational domain has the dimension of 0.2 x 0.5 m, no slip wall boundary condition was applied on the 

top and bottom boundaries, and periodic boundary conditions were applied at both left and right ends. 

 

 

Figure 2: Geometry and boundary conditions of flow between two parallel plates. 

Table 1. Validation tests 

Acceleration 𝑎 [
𝑚

𝑠2
] Bingham number 

 

0.125 1.931 

0.175 1.217 

0.250 0.782 

0.375 0.490 

 

The velocity profile of the Bingham fluid flow between two parallel plates was obtained analytically by: 

𝑢(𝑦) =

{
 
 

 
 

1

2

𝑑𝑃

𝑑𝑥
𝑦2 −

1

𝜂
(
ℎ

2

𝑑𝑃

𝑑𝑥
+ 𝜏0) 𝑦, 0 ≤ 𝑦 ≤ 𝑦𝑙𝑖𝑚

𝑢𝑚𝑎𝑥 = −
1

2𝜂

ℎ2

4

𝑑𝑃

𝑑𝑥
+ ℎ𝜏0 +

𝜏0
2

𝑑𝑃

𝑑𝑥

, 𝑦𝑙𝑖𝑚 ≤ 𝑦 ≤ (ℎ − 𝑦𝑙𝑖𝑚)

1

2

𝑑𝑃

𝑑𝑥
(ℎ − 𝑦)2 −

1

𝜂
(
ℎ

2

𝑑𝑃

𝑑𝑥
+ 𝜏0) (ℎ − 𝑦), (ℎ − 𝑦𝑙𝑖𝑚) ≤ 𝑦 ≤ ℎ

                                                    (15) 

In numerical simulations, we compared the analytical values with semi-implicit and implicit formulations, as 

well as the results obtained by [14]. The simulated Bingham fluid had a plastic viscosity of 50 𝑃𝑎. 𝑠, a density of 

2200 𝑘𝑔/𝑚³, and a yield stress of 15 𝑃𝑎. Table 1 shows the acceleration values 𝑎 and corresponding Bingham 

numbers 𝐵𝑖. The numerical parameters adopted were a particle spacing of 5 mm, a time step of 2 × 10−6s for [14] 

and the semi-implicit MPS and a time step of 5 × 10−4 for the implicit MPS, and a regularization parameter 𝑚 =

200.  

Figure 3 illustrates the velocity profiles of the Bingham fluid flow obtained by the four methods: analytic 

(orange dots), Mata et al. (green dots), semi-implicit MPS (blue dots), and implicit MPS (red dots). The results 

show that a higher Bingham number (𝐵𝑖) is associated with higher yield stress, resulting in a smaller sheared 

region and a higher velocity gradient between the plates, and the implicit formulation closely matches the analytical 

solution for the fluid in a steady state.  
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Figure 3: Velocity profiles obtained for a Bingham fluid with 𝜏0 =  15 Pa at different Bingham numbers. The 

graphs show acceleration values of: (a) 0.125 m/s², (b) 0.175 m/s², (c) 0.250 m/s², and (d) 0.375 m/s. 

Table 2: Processing time 

Cases Semi-implicit method Implicit method 

0.125 m/s^2 11h1min 25min 

0.175 m/s^2 11h4min  17min 

0.250m/s^2 11h2min 16min 

Table 2 shows the processing times for the simulated cases using both the semi-implicit and implicit methods. 

Overall, the implicit method is significantly more efficient in terms of processing time compared to the semi-

implicit method. 

4  3DCP Simulations 

The MPS simulations were conducted to model the extrusion of fresh mortar based on experiments by 

Comminal et al. [15]. The 3D model's geometry (Figure 3) includes an extrusion nozzle and a planar surface for 

concrete deposition. The nozzle is a cylindrical tube with a 25 mm inner diameter, and the planar surface has a 

predetermined motion, as adapted from the experiments. 

 

Figure 4: Geometry of the model. 

The numerical investigation included simulations with varying printing speeds (𝑉) and extrusion volumetric 

flux (𝑈).  For our parametric study, we modeled the relative movement between the nozzle and the table, where 

the table moves at speed 𝑉 while the nozzle deposits material at a rate of 𝑈. The simulation starts with the nozzle 

empty of fluid due to the high yield stress and resulting thin shear layer, which would cause instabilities if the 

nozzle were full at the start. The nozzle height is 17.5 mm. Test 1 with printing speed of 20 mm/s and extrusion 

volumetric flux of 0.0336 m/s and test 2 with printing speed of 50 mm/s and extrusion volumetric flux of 0.0369 

m/s. The rheological and physical parameters are listed in Table 3. 
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Table 3: Rheological parameters and physical properties 

Parameters Symbols Numerical values 

Density 𝜌 2100 kg/m3 

Yield stress 𝜏0 630 Pa 

Plastic viscosity 𝜇𝑝 7.5 Pa∙s 

Strain rate �̇� 10−1𝑠−1 

Papanastasiou m 𝑚 200 

Gravity 𝑔 9.80665 𝑚/𝑠2 

 

 

Figure 5: Snapshot of pressure profile in the implicit formulations with m=200, and 𝑙0 = 0.0025m. 

Figures 4 shows the pressure filed obtained by the implicit model. For the simulation of the implicit model, 

the time interval Δt  is 5 x 10−4  s. The particle distance 𝑙0  is 0.0025 m. The propagation velocity of the 

disturbances 𝐶𝑠 is 5 m/s. The Papanastasiou regularization parameter (m) is 200. The total processing time is 3 

hours. 

The experimental results for the cross-sectional shapes from Comminal et al. [15] were measured at 50 cm 

from the initial deposition point of the concrete layer, using 𝑙0 = 0.00125 m. 

In Figure 5, comparisons are made between the cross-sectional shapes of the 2 tests conducted with the 

implicit formulation of the MPS and the numerical models EVP, GNF, and the experimental model by Comminal 

et al. (2020). 

 

Figure 6: Cross-sectional shapes from the simulations and experiments. 

Overall, the numerical and experimental results qualitatively agree well, with better alignment in test 1, which 

corresponds to the case with higher printing speed. As noted by Comminal et al. [15] the layer height tends to 

exceed the nozzle height, and this difference increases as the speed ratio 𝑉/𝑈 decreases. This phenomenon is 

observed only in test 1 of the MPS simulation, where the excess layer height is due to the limited space available 

to accommodate all the extruded material beneath the nozzle, resulting in an increase in layer height or width. 

However, further investigations are necessary to improve the implicit MPS model. 
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5  Conclusions 

The simulations of non-Newtonian flow between parallel plates were validated against analytical solutions, 

showing satisfactory qualitative agreement. The implicit MPS formulation could replicate the velocity profile of 

Bingham fluids in a steady state. The 3D concrete printing simulations with varying printing speeds and extrusion 

volumetric fluxes demonstrated that the implicit method could predict the cross-sectional shapes of extruded layers 

Despite the promising results, the study observed that the printed layer height might exceed the nozzle height, 

particularly at higher printing speeds. This indicates the need for further investigations to improve the accuracy of 

the implicit MPS model, considering the spatial variability of apparent viscosity and extrusion dynamics. In 

conclusion, the implicit MPS method could be an effective tool for simulating 3D concrete printing, providing a 

better understanding of the dynamic behaviors during the extrusion process. 
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