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Abstract. Fiber-reinforced composite material structures are widely used in various industries, such as the 
automotive, naval, aeronautical, and construction industries. Laminated structures, made up of thin layers of 
materials such as carbon fiber-reinforced laminates, offer high strength and stiffness. These layers are stacked in 
different orientations to provide superior mechanical properties compared to conventional structures. Due to the 
complexity and number of variables involved, the traditional methodology of design based on trial and error is 
ineffective, making optimization techniques a proper alternative. In laminated structure design, it is necessary to 
satisfy strength, stiffness, and performance constraints. Optimization techniques find an optimal lamination 
scheme that satisfies these requirements. The arrangement of the layers and the orientation of the fibers have a 
significant impact on the final performance of the structure. The permutation problem in optimization involves 
determining the most effective sequence of layers and fiber orientations. This work proposes implementing a 
heuristic optimization technique based on layer permutation, considering a specific number of layers in each 
lamination. The algorithm is implemented in Octave and is demonstrated in examples of maximizing the buckling 
factor of laminated plates. 
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1  Introduction 

In recent years, the demand for light and strong structures has driven the development of composite materials in 
various industries. Carbon fiber-reinforced composites stand out for their exceptional strength and stiffness 
properties and are widely used in critical structural components. Laminate structures, composed of thin layers of 
composite material with specific fiber orientations, allow the overall mechanical performance of the laminate to 
be optimized. 
Optimizing these structures is challenging due to the large number of variables involved. Advanced optimization 
techniques, such as genetic algorithms (GA), are essential for finding the optimal configuration that satisfies 
specific strength and stiffness constraints. This work proposes an optimization technique based on GAs, 
implemented in Octave language, to optimize laminated structures. The effectiveness of the algorithm is 
demonstrated on examples of laminated plates, highlighting the improved performance of carbon fiber-reinforced 
structures. 

2  Buckling of Laminated Plates  

In this work, we address the optimization of carbon fiber reinforced laminates, made up of several thin layers of 
composite material in 0°, 45°, and 90° orientations, to maximize their mechanical properties. The laminate is 
symmetrical, balanced and has a given thickness, and is subjected to biaxial and shear loads. The formulation used 
to evaluate the buckling load in laminated plates is presented below. 
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Figure 1. Laminated plate with biaxial and shear loading. 

2.1 Buckling analysis 

The buckling analysis is carried out to ensure that the laminated plate can maintain its stability with the applied 
loads. The buckling load factor is calculated considering the behavior of the plate under biaxial and shear loading. 
Consider a laminated plate with sides a and b, with biaxial loading 𝑁!!,  𝑁"" and shear loading 𝑁!". The buckling 
load factor due to biaxial loading is given by [1]:   
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Where D11, 𝐷2., 𝐷.. and 𝐷33 are the coefficients obtained from the ABD stress-strain matrix [1] p and q are the 
number of waves in each direction of the plate when it loses stability, with values ranging from 1 to 20.  
 
In the case of laminates subjected to shear loading, the shear buckling load factor is obtained approximately from 
[4]: 
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Where the Gamma (Γ) and Beta1 (β1) parameters are calculated as a function of the laminate's stiffness. Gamma 
is calculated by: 

	 Γ =  7*""*!!
*"!-.	*$$

		.		 (6)	

Beta1 is interpolated from Gamma using Table 1. 

Table 1. Coefficient β1 for the buckling load factor. 

Γ β1 
0.0 11.71 
0.2 11.80 
0.5 12.20 
1.0 
2.0 
3.0 
5.0 
10.0 
20.0 
40.0 

∞ 

          13.17 
          10.80 
           9.95 
           9.25 
           8.70 
           8.40 
           8.25 
           8.13 

 
The critical buckling load for the case of joint biaxial and shear loading is approximated by [3]: 

	 2
8)(+,-)

=  2
8/(+,-)

+	 2
80!
		 (4)	

Thus, the critical buckling load is given by the smallest factor considering λ9(+,-) e λ4: 
 

	 λ = min{|	λ4:, 	λ9(+,-);		 (5)	
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3  Genetic Algorithm for Permutation Problem 

The genetic algorithm for permutation problems presented in this work, used in laminate optimization, combines 
sequences of individuals using gene rank crossover and introduces random modifications via mutation, which This 
increases the diversity of the population and avoids local solutions. Penalization ensures that solutions respect 
specific constraints, such as the maximum number of contiguous layers. This method is effective for finding the 
optimal stacking sequence that maximizes the critical buckling load, solving complex combinatorial problems with 
multiple constraints. 

3.1 Codification 

In permutation problems, the design variables represent a given permutation of a given base sequence. Thus, the 
individuals (laminate) consist of a sequence of integers ranging from 1 to n, where n is the number of options 
available. Figure 2 illustrates an example of coding an individual (genotype) and the resulting laminate obtained 
after performing the respective permutation (phenotype). 
 

 

 

 
a) Base laminate. b) Genotype. c) Phenotype (decoded laminate). 

Figure 2. Example of codification of symmetric and balanced laminate. 

3.2 Gene Rank Crossover 

Gene ranking crossover is an alternative crossover for permutation problems [2]. Inspired by the classification of 
competitors by judges, this technique combines the classifications of individuals' genes to create new 
configurations. The judges represent the weight assigned to each chromosome. 

For example, considering three layers classified as [A, B, C] and [C, A, B], with random weights 𝑊2 and  𝑊., such 
that que  𝑊2 +𝑊. = 1, the weighted classifications are combined to generate a new sequence, which is obtained 
after sorting the resulting rank. The procedure is discussed below. 

Considering a base laminate with a specific sequence of layers, such as [90./90./90./±45/±45/0.]4	 where its base 
permutation sequence is defined as [1/2/3/4/5/6]. The permutations of this sequence for two parents, described by: 
Permutation 1 (Parent 1):  [2/5/4/3/6/1], which results in the Laminate: [90./±45/±45/90./0./90.]4; Permutation 
2 (Parent 2):  [1/2/4/5/3/6], which results in the Laminate: [90./90./±45/±45/90./0.]4. 

O rank de cada cromossomo é dado pela posição que este ocupa no genótipo. Por exemplo, no Pai 1, o cromossomo 
1 tem rank 6, pois está na sexta posição do genótipo. Assim, os ranks de cada cromossomos são dados por 
[6/1/4/3/2/1] e [1/2/4/5/3/6] respectivamente. Utilizando os pesos 𝑊2=0.4634 e 𝑊. = 0.5366, o rank combinado é 
dado por:  

 [6/1/4/3/2/1] * 0.4635 + [1/2/4/5/3/6] * 0.5366 = [3.3170   1.5366   4.5366   3.0000   3.0732   5.5366] 

The rank-ordering sequence represents the son's genotype, which is given by: 

Son = [2   4   5   1   3   6], Laminate sequence: [90./± 45/ ± 45/90./90./0.]4. 

It is important to note that this operator always results in a valid permutation. A second child is generated by 
inverting the values of 𝑊2 and  𝑊.. 
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3.3 Mutation 

In mutation, variations are introduced into the children to increase the diversity of the population and avoid 
solutions in local minima. The code runs through all the children, generating a random number for each one. If 
this number is less than the defined mutation rate, a random permutation is performed on the child's genotype, 
changing the sequence of the layers in the laminate. This process randomly modifies the stacking configurations, 
allowing new solutions to be explored and increasing the genetic diversity in the population, helping to find the 
best solution in the optimization. 

3.4 Treatment for Constraints 

In the laminate optimization problem, penalties are applied to ensure compliance with the constraints. During the 
evaluation of the solutions, the objective function is increased based on the violations of the limitations, multiplied 
by a penalty factor. This penalty is applied both to the initial population and to the children generated after the 
crossover and mutation steps. This ensures that solutions that violate the constraints are less favored, directing the 
algorithm to find permutations that maximize the critical buckling load while meeting the imposed constraints. 
The penalized objective function is given as: 

	 𝜑 =  𝜆 +𝑚𝑎𝑥(𝑁9:#; − 4,0)	𝑟<=#+>;"		 (7)	

Where φ is the penalized objective function, 𝑟<=#+>;"  is the penalization factor, adopted as 0.1 in the specific 
problem. 𝑁9:#;	is the highest count of adjacent repeated layers, limited to 4 in the issue dealt with in this work. It 
is worth noting that this restriction is only applied to the 0° and 90° layers, while the 45° blades alternate between 
45° and -45°, presenting no continuity problems.   

4  Numerical Example 

This example deals with maximizing the critical buckling load of laminated plates with biaxial and shear loading, 
with layers oriented at 0°, ±45°, and 90°, and respecting the constraint of repeated layers. The optimization problem 
is defined considering a specific number of layers for each orientation. The objective is to determine the most 
effective stacking sequence, which must be symmetrical and balanced, to maximize the critical buckling load (λ). 
The constraint includes a maximum of four layers with the same orientation. 

The results were obtained for a 24-inch square graphite-epoxy plate, with specific properties: 𝐸2=  = 18.5 × 103  
psi (127.59 GPa), 𝐸.=  = 1.89 × 103 psi (13.03 GPa),	𝐺2.= 0.93 × 103  psi (6.4 GPa), thickness of each layer 𝑡%>"= 
0.005 in (0.0127 cm), and Poisson coefficient (𝑣2.)= 0.3 [2]. 

Table 2. Quantity of piles for charging in the three orientations. 

Case 							𝑁!								 
(𝑙𝑏/𝑖𝑛) 

							𝑁"						 
(𝑙𝑏/𝑖𝑛) 

𝑁!" 
(𝑙𝑏/𝑖𝑛) 

𝑁? 
 

𝑁5@ 𝑁A? λ 

1 0 -2000 1000 4 8 4 0.775 
2 0 -16000 8000 8 16 8 0.768 
3 -5000 -2000 1000 6 12 6 0.870 

 
The results for the algorithms were obtained with a population of 20 individuals, an 80% crossover rate, and a 
15% mutation rate, over 200 generations. The success rate was measured considering a percentage tolerance of 
1%, performing 30 optimization runs, and checking how many of these runs reached the value within the specified 
margin. The results demonstrated the effectiveness of the method, with a high success rate and robust solutions 
for laminate design. 
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                         Case (1)                                               Case (2)                                             Case (3) 

   

Figure 3. Average best / Gen octave output. 

The graphs show the evolution of the best objective functions of 0.775 for 64 blades, 0.768 for 128 blades, and 
0.870 for 96 blades over 200 generations. The success rates are 85%, 20%, and 50% respectively, indicating greater 
efficiency in optimization with 64 blades. All cases show a continuous reduction in the objective function, 
reflecting the improvement of the solutions. 

Table 3. Optimal buckling factor obtained for each case. 

Case λ9 Average of the best 
results λ 

Stacking sequence 

1 0.776 -0.775 [(±45)B/(90)./0/90/090/(0).]4 
2 0.527 -0.762 [(0)B/(±45)23/(90)B]4 
3 0.693 -0.870 [0/45/90/0/45/90/0/45/90/0/45/90/

0/45/90/0/45/90/0/45/90/0/45/90]4 
 

5  Conclusions 

This study explored the application of genetic algorithms (GAs) for optimizing composite laminates with a focus 
on maximizing the buckling load. A permutation genetic algorithm with gene-rank crossover was implemented 
and applied, which proved effective in optimizing a laminated plate, showing promising results in terms of 
convergence to optimal solutions. 
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