
HOOP: a Python software for homogenization of multiphase
composite materials using object-oriented architecture

Carlos André dos S. Lima¹, Rodrigo Mero S. da Silva¹, Leonardo de Melo Medeiros²

1Instituto Federal de Alagoas (IFAL), Campus Palmeira dos Índios
Av. Alagoas, S/N - Palmeira de Fora, Palmeira dos Índios - AL, 57608-180, Brazil
casl2@aluno.ifal.edu.br, rodrigo.mero@ifal.edu.br
²Instituto Federal de Alagoas (IFAL), Campus Maceió
R. Mizael Domingues, 530 - Centro, Maceió - AL, 57020-600
leonardo.medeiros@ifal.edu.br

Abstract. HOOP (Homogenization Object-Oriented Programming) is a Python software package designed for
efficient and flexible mean-field micromechanical analysis. Utilizing an object-oriented architecture, HOOP
enables researchers to investigate mechanical and thermal phenomena within multiphase composite materials.
By leveraging established libraries like NumPy, Seaborn, and Matplotlib, HOOP offers robust numerical
operations, data manipulation capabilities, and compelling visualizations. The strategic integration of various
Python libraries within HOOP's architecture fosters inherent flexibility and interoperability. This enables tailored
workflows and seamless integration with established tools. Users can leverage alternative libraries for specific
tasks, expanding capabilities beyond core functionalities. Moreover, HOOP has been rigorously tested and
validated, emerging as a powerful and cost-effective alternative to commercial software for multiphase
composite analysis. This makes it an invaluable tool for academic researchers and engineers alike, democratizing
access to advanced micromechanical analysis capabilities.

Keywords: composite materials, framework, object-oriented programming (OOP), python.

1 Introduction

In the industry, the combination of materials is a crucial strategy to achieve significant improvements in the
essential properties of products, whether mechanical, thermal, magnetic, or others. This practice not only
optimizes the performance of materials but also prolongs their service life. For example, in civil engineering, the
combination of materials with concrete not only strengthens its mechanical properties but also improves its
functionality, generating efficiency in construction [1].

However, a problem persists: the lack of products on the market that offer robust analytical capabilities to
perform large-scale analyses without the need for field tests. In this work, we present a computational tool called
HOOP, originally proposed by [1], a software developed in Python using Object-Oriented Programming (OOP),
specifically designed to meet the demands of the industry. This software is capable of performing numerical and
graphical analyses of a mechanical or conductivity nature. Although there is the possibility of implementing
other types of analysis, given its flexibility, facilitating experiments outside laboratories or for independent
research.

With this solution, we aim to increase the efficiency and competitiveness of the industry, promoting
significant advances in the area of composite material analysis.

CILAMCE-2024
Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Maceió, Brazil, November 11-14, 2024



A Python software for homogenization of multiphase composite materials using object-oriented architecture

2 Methods

2.1 Modeling

To develop software that is scalable and capable of effectively and flexibly meeting the mentioned needs,
the OOP paradigm is chosen. OOP is a programming paradigm that allows the representation of real-world
entities in the computational context through classes and methods. This provides lean and scalable code,
susceptible to modifications and updates without major issues, and, of course, is based on the idea of objects [2].

The project follows an architecture in which a "parent" class is defined, and other classes use its attributes.
For example, the "Analysis" class, one of the "child" classes, contains important data about the nature of the
problem. These classes serve as reference points for improvements in the software experience, as well as in the
tools and features provided.

The entire process will be developed in Python, which, besides being open source (constantly evolving due
to its large community), has flexibility and compatibility with other established technologies in the market,
making Python an invaluable tool in modern software development.

Figure 1: Class diagram for homogenization modulus

2.2 Design Patterns

To maintain its scalability and offer viable alternatives for other developers, HOOP adopts several software
engineering guidelines. This ensures HOOP's integration into the open-source universe, providing the software
with robustness and reach for future collaborators. Additionally, it follows PEP 8, a style guide widely accepted
by the Python community, which includes aspects such as clarity in variable naming [3]. It embraces the DRY
(Don't Repeat Yourself) principle, which advises avoiding repetitions whenever possible, especially in OOP code
[4]. Moreover, detailed documentation and a user guide for the software will be developed, enabling
understanding and adjustment. Tools like Ruff are used to automatically check for PEP 8 compliance, aiming to
simplify the incorporation of new features in the future.

2.3 Implementation of new models

Integrating a new model into HOOP is as simple as adding a book to a categorized bookshelf. Just place the
"new_model.py" file in the "micmodels" folder, and it becomes part of the software's capabilities. This allows for
plotting and computation applicable to thermal or mechanical analysis, depending on the model's purpose. This

CILAMCE-2024
Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Maceió, Brazil, November 11-14, 2024



F. Author, S. Author, T. Author (double-click to edit author field)

interactive process, where we add a new file, import it, and plot it, is at the core of the software. It permeates and
completely supports its architecture. It will be up to future researchers to decide whether to implement new
models or make adjustments within the pre-existing models.

2.4 Validation

The validation of the implemented classes, whether for design, new models, or methods, is tested against
previously published articles on the studied topic (homogenization), in addition to debugging, thus ensuring the
software's reliability. Below is a comparison between a mechanical problem found in Miled et al. [6] Fig. 2 and
the same problem performed in HOOP Fig. 3.

Figure 2. Variation of the EPS concrete Young’s modulus according to porosity (p): homogenization
schemes vs experimental data.

Figure3. The result generated by our software shows that the behavior of the models demonstrates the
correct construction of the problem's mathematics.

CILAMCE-2024
Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Maceió, Brazil, November 11-14, 2024



A Python software for homogenization of multiphase composite materials using object-oriented architecture

2.5 Results

Although still in its early stages in terms of interface, HOOP has proven to be a promising tool compared to
existing solutions for homogenization using computational tools, especially as opposed to closed-source tools.
This is primarily due to its flexibility and scalability. Below, in Tab.1, is a real case with validated results
generated by HOOP. To date, the tool includes dozens of models and two types of analysis, each with its specific
design method: mechanical and conductivity.

Table 1. Coefficients in constitutive relations

Materials E G v

Concret 28 Gpa 11.2 Gpa 0.20

Glass 70 Gpa 27 Gpa 0.22

Figure 4. Results computed by HOOP, including eight models for Tab. 1

Where, In Tab.1 E denotes the Modulus of Elasticity, G represents the Shear Modulus, and ν is Poisson's Ratio.
Also, GPa stands for gigapascals.

3 Conclusions

The HOOP integrates software engineering approaches with the versatility of the Python language and its
frameworks, all implemented in an object-oriented manner. In this work, we showed how we built and tested this
for composite material analysis, demonstrating that it can be adapted and improved over time with minimal

CILAMCE-2024
Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Maceió, Brazil, November 11-14, 2024



F. Author, S. Author, T. Author (double-click to edit author field)

alterations to its OOP architecture.

The authors hereby confirm that they are the sole liable persons responsible for the authorship of this work, and
that all material that has been herein included as part of the present paper is either the property (and authorship)
of the authors, or has the permission of the owners to be included here.

References

[1] R. M. S. da Silva, "Coupling between geometric optimization models of particulate systems and
micromechanics of mean fields for multiscale analysis of multiphase cementitious composites," 2022.
[2] A. Kay, "Dr. Alan Kay on the Meaning of 'Object-Oriented Programming'," 2003. [Online]. Available:
https://example.com. [Accessed: Jun. 10, 2024].
[3] G. van Rossum, "PEP 8 – Style Guide for Python Code," *Python*. [Online]. Available:
https://peps.python.org/pep-0008/. [Accessed: Jun. 10, 2024].
[4] A. Hunt and D. Thomas, *The Pragmatic Programmer: From Journeyman to Master*, 1st ed., US:
Addison-Wesley, 1999, pp. 320. ISBN: 978-0201616224.
[5] R. M. S. da Silva and A. S. R. Barboza, "Concrete modeling using micromechanical multiphase models and
multiscale analysis," *Revista IBRACON de Estruturas e Materiais*, vol. 16, 2023, Art. e16501.
[6] K. Miled, K. Sab, and R. Le Roy, "Effective elastic properties of porous materials: Homogenization schemes
vs experimental data," *Mechanics Research Communications*, vol. 38, no. 2, pp. 131–135, 2011.

CILAMCE-2024
Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Maceió, Brazil, November 11-14, 2024


