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Abstract. Isogeometric Analysis is a numerical method that integrates the concepts of geometric modeling and 

structural analysis. It approximates the displacement field using the same basis functions employed by Computer-

Aided Design (CAD) systems to describe the structure’s geometry. This paper presents an isogeometric 

formulation for the analysis of functionally graded plates based on Higher-Order Shear Deformation Theories 

(HSDTs), that require a C1 continuity displacement field, and Non-Uniform Rational B-Splines (NURBS), that 

allow high continuity elements. A series of tests were conducted to assess the accuracy of this formulation 

considering examples available in the literature. The obtained results present excellent agreement with the 

reference solutions for thin and thick plates. 
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1  Introduction 

Functionally Graded Materials (FGM) are advanced composites, typically composed of ceramic and metal, 

in which the volume fraction of their constituents varies smoothly along an interest direction. These materials were 

initially proposed as a solution for thermal barriers development, but your applications are now diverse and 

numerous [1]. The composition variation results in a gradual change in their properties, enhancing the performance 

of structures subjected to thermal and mechanical loads, but making structural analysis more complex. 

Plates are three-dimensional flat structures in which the thickness is much smaller than their other two 

dimensions. Due to their wide application, different theories have been proposed for the structural analysis of 

plates. These theories can be categorized based on their treatment of transverse shear strains. The Kirchoff-Love 

Theory [2] (also known as the Classical Plate Theory - CPT) disregards these strains, the Reissner-Mindlin Theory 

[3] (also known as the First-Order Shear Deformation Theory – FSDT) assumes shear strains are constant through 

the plate thickness, and Higher-Order Shear Deformation Theories (HSDTs) [4] account for nonlinear variations 

of shear strain through different approaches. 

Among these theories, the HSDTs are the most robust and accurate ones. However, they require the 

displacement field to have a C1 continuity, which is complex for isoparametric finite elements. Thus, Isogeometric 

Analysis emerges as a more feasible alternative by employing high continuity elements based on Non-Uniform 

Rational B-Splines (NURBS). Therefore, this paper presents and assesses a NURBS-based isogeometric 

formulation for thermal buckling and free vibration analyses of functionally graded plates using HSDTs. 
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2  Analysis of functionally graded plates 

In functionally graded plates, the volume fraction variation of their constituents generally occurs in the 

thickness direction. This work considers a power-law variation: 

𝑉𝑐 = (
1

2
+

𝑧

ℎ
)

𝑁

, 𝑉𝑚 = 1 − 𝑉𝑐
 (1) 

where 𝑉𝑐 is the volume fraction of the ceramic constituent, 𝑉𝑚 is the volume fraction of the metallic constituent, 𝑧 

is the spatial coordinate starting from the plate mid-plane in the thickness direction, ℎ is the plate thickness and 𝑁 

is an arbitrary rational exponent. The calculation of the effective properties, in turn, was carried out based on 

Voigt’s micromechanical model, also known as the Rule of Mixtures: 

𝑃𝑒𝑓 = 𝑉𝑐 ⋅ 𝑃𝑐 + 𝑉𝑚 ⋅ 𝑃𝑚 (2) 

where 𝑃𝑒𝑓 is the effective value of a given property at a point along the thickness, 𝑃𝑐 is the property value 

corresponding to the ceramic constituent and 𝑃𝑚 is the property value corresponding to the metallic constituent. 

2.1 High-order shear deformation theories 

In general, the displacement field described by higher-order theories is given by [4]: 

𝑢̅(𝑥, 𝑦, 𝑧) = 𝑢(𝑥, 𝑦) − 𝑧 ⋅ 𝑤𝑥 + 𝑓(𝑧) ⋅ (𝑤𝑥 − 𝛽𝑥(𝑥, 𝑦)) 

𝑣̅(𝑥, 𝑦, 𝑧) = 𝑣(𝑥, 𝑦) − 𝑧 ⋅ 𝑤𝑦 + 𝑓(𝑧) ⋅ (𝑤𝑦 − 𝛽𝑦(𝑥, 𝑦))

𝑤̅(𝑥, 𝑦, 𝑧) = 𝑤(𝑥, 𝑦)

 (3) 

where 𝑢̅, 𝑣̅ and 𝑤̅ are the global displacements, 𝑢, 𝑣 and 𝑤 are the displacements in the plate mid-plane, 𝛽𝑥 and 

𝛽𝑦 are the rotations in the undeformed mid-plane and normal to the 𝑥𝑧 and 𝑦𝑧 planes, respectively, and 𝑓(𝑧) is a 

characteristic function that defines the distribution of the shear strains along the thickness. Three shear deformation 

theories are considered in this work: the first-order theory (FSDT), which can be represented by 𝑓(𝑧) = 𝑧, the 

Third-Order Shear Deformation Theory (TSDT), in which 𝑓(𝑧) = 𝑧 − 4𝑧3/3ℎ2, proposed by Reddy [5], and the 

Exponential Shear Deformation Theory (ESDT), in which 𝑓(𝑧) = 𝑧𝑒−2(𝑧/ℎ)2 , proposed by Mantari et al. [6]. 

2.2 Isogeometric Analysis 

Isogeometric analysis is a concept introduced by Hughes et al. [7] and consists of a numerical method similar 

to the Finite Element Method (FEM). However, the shape functions used in this approach are not polynomials, 

such as Lagrange and Hermite polynomials. Instead, the same functions used in Computer-Aided Design systems 

for geometry description, such as Non-Uniform Rational B-Splines (NURBS), are employed. Thus, the 

isogeometric formulation presented in this work starts from the geometric description of plates using a NURBS 

surface, defined by: 

𝑆(𝜉, 𝜂) = ∑ ∑ 𝑅𝑖,𝑗,𝑝(𝜉, 𝜂) ⋅ 𝒑𝑖,𝑗

𝑚

𝑗=1

𝑛

𝑖=1

, 𝒑𝑖,𝑗 = [𝑥𝑖,𝑗 𝑦𝑖,𝑗 𝑧𝑖,𝑗]𝑇 (4) 

where 𝑆(𝜉, 𝜂) is the function that maps the NURBS surface from a parametric space 𝜉𝜂 to the Cartesian space, 𝑝 

is the surface’s degree, 𝐩𝑖,𝑗 is a control point in the Cartesian space of a grid 𝑛 × 𝑚 and 𝑅𝑖,𝑗,𝑝(𝜉, 𝜂) is the basis 

function of degree 𝑝 associated with that point. 

Once the geometry is defined, similarly to the isoparametric formulation of finite elements, the central idea 

of isogeometric analysis is that the same basis functions used for the exact geometric description of the structure 

are also used to approximate the displacement field. Therefore, the displacement field is approximated by: 

𝑢(𝜉, 𝜂) = ∑ ∑ 𝑅𝑖,𝑗,𝑝(𝜉, 𝜂) ⋅ 𝒖𝑖,𝑗

𝑚

𝑗=1

𝑛

𝑖=1

, 𝒖𝑖,𝑗 = [𝑢𝑖,𝑗 𝑣𝑖,𝑗 𝑤𝑖,𝑗 𝛽𝑥,𝑖,𝑗 𝛽𝑦,𝑖,𝑗]𝑇  (5) 

where 𝑢(𝜉, 𝜂) is the displacement field in the plate mid-plane, and 𝐮𝑖,𝑗 is a vector of displacements and rotations 
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associated with one of the mesh control points. With this concept understood, to calculate the displacement vectors 

𝐮𝑖,𝑗, the system of equations is assembled in a manner analogous to FEM as demonstrated by Praciano et al. [3].  

3  Numerical Examples 

Two well-known examples of functionally graded plate are considered to assess the accuracy of the presented 

formulation. In both cases, the plate geometry is square, as shown in Fig. 1, and 7 different discretization schemes 

were adopted (2, 3, 4, 6, 8, 12, and 16 cubic NURBS elements per side of the plate). The materials used were 

SUS304 and Si3N4, whose properties vary depending on the example, as shown in Tab. 1. 

Table 1. Material properties 

Example Material 𝐸 (GPa) 𝜈 𝜌 (kg/m³) 𝛼 (°C-1) 

1 
SUS304 201.04 0.30 8166 - 

Si3N4 348.43 0.30 2370 - 

2 
SUS304 207.79 0.28 - 1.5321e-05 

Si3N4 322.27 0.28 - 7.4746e-06 

Figure 1. Functionally Graded Square Plate Geometry 

3.1 Example 1 – Free vibration analysis 

This example concerns a free vibration analysis of a plate with 𝑎/ℎ = 10 ratio. Its boundary conditions are 

defined by: 

∀(𝑥, 𝑦) ∈ {(𝑥, 𝑦) ∈ ℝ2 | 𝑦 = 0 ∨ 𝑦 = 𝑎} : 𝑢 = 𝑤 = 𝛽𝑥 = 0

∀(𝑥, 𝑦) ∈ {(𝑥, 𝑦) ∈ ℝ2 | 𝑥 = 0 ∨ 𝑥 = 𝑎} : 𝑣 = 𝑤 = 𝛽𝑦 = 0
 (6) 

The normalized frequency is computed as: 

𝜔̅𝑖 = 𝜔𝑖ℎ/𝑎√𝜌𝑐/𝐺𝑐  (7) 

where 𝜔𝑖 is the natural vibration frequency of order 𝑖 in rad/s, 𝜌𝑐 and 𝐺𝑐 are the density and shear modulus of the 

ceramic constituent (Si3N4), respectively. The results obtained are compared with those achieved by Nguyen et al. 

[8] from a NURBS-based isogeometric formulation but using a novel quasi-3D theory. In this sense, a convergence 

study of the first two vibration modes, as shown in the graphs in Fig. 2, and a direct comparison using the most 

discretized mesh (16x16 elements), available in Tab. 2, were performed. Regardless of the theory and the value of 

𝑁, the results converge to given by the reference. This convergence is evidently monotonic, a behavior explained 

by the use of full integration scheme. Furthermore, all theories presented practically the same frequency values in 

both vibration modes. 
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Table 2. Normalized natural frequencies of FGM square plate 

Mode  1  2 

𝑁  1.0 2.0 5.0 10.0  1.0 2.0 5.0 10.0 

FSDT  0.0542 0.0485 0.0438 0.0416  0.1293 0.1155 0.1044 0.0991 

TSDT  0.0542 0.0485 0.0438 0.0416  0.1292 0.1154 0.1042 0.0990 

ESDT  0.0542 0.0485 0.0438 0.0416  0.1293 0.1154 0.1042 0.0990 

[8]  0.0542 0.0485 0.0438 0.0416  0.1293 0.1154 0.1042 0.0990 

 

(a) Mode 1 (b) Mode 2 

Figure 2. Convergence of normalized natural frequencies for 𝑁 = 1.0 

3.2 Example 2 – Thermal buckling analysis 

This example concerns a thermal buckling analysis under a uniform temperature rise. The boundary 

conditions are defined by: 

∀(𝑥, 𝑦) ∈ {(𝑥, 𝑦) ∈ ℝ2 | 𝑥 ∈ {0, 𝑎} ∨ 𝑦 ∈ {0, 𝑎}} : 𝑢 = 𝑣 = 𝑤 = 𝛽𝑥 = 𝛽𝑦 = 0 (8) 

The result consists of the critical temperature increment Δ𝑇𝑐𝑟 (K), considering that the material properties are 

temperature independent. The obtained results are compared with those obtained by Bateni et al. [9] using the 

multi-term Galerkin method in conjunction with a refined plate theory with a parabolic distribution of shear strains. 

In this context, a convergence study, as shown in Fig. 3, and a direct comparison of the critical temperature 

increments of the most discretized mesh (16x16 elements), available in Tab. 3, were performed. The critical 

temperatures are in very good agreement with the reference results, with an average difference of 0.2% for 𝑎/ℎ =

100 and 0.8% for 𝑎/ℎ = 20. Considering the use of the full integration scheme and the resulting monotonic 

convergence, these differences are probably due to the more refined mesh used in this work. Another explanation 

is the difference between the analysis methods and plate theories employed in both studies. Finally, as in the 

previous example, the difference between the values of the considered theories is slight. 

Table 3. Critical buckling temperatures of FGM square plate 

𝑎/ℎ  100  20 

𝑁  0.0 0.5 1.0 2.0 5.0  0.0 0.5 1.0 2.0 5.0 

FSDT  45.520 33.496 30.135 27.838 25.936  1094.67 806.235 725.117 669.113 622.574 

TSDT  45.519 33.495 30.134 27.836 25.934  1094.70 806.444 725.133 668.707 621.813 

ESDT  45.519 33.496 30.135 27.836 25.934  1094.97 806.643 725.310 668.840 621.922 

[9]  45.528 33.501 30.140 27.842 25.940  1099.90 788.574 728.532 671.962 624.970 
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(a) Convergence for 𝑎/ℎ = 100 (b) Convergence for 𝑎/ℎ = 20 

Figure 3. Convergence of critical buckling temperature for 𝑁 = 1.0 

4  Conclusions 

This paper presented and assessed a NURBS-based isogeometric formulation for thermal buckling and free 

vibration analyses of functionally graded plates using HSDTs. In this regard, this formulation has proven effective 

in performing the targeted analyses. The results obtained exhibit excellent agreement with those available in the 

literature and converge regardless of the scenarios tested. Furthermore, the convergence of the results does not 

appear to be significantly affected by the shear deformation theory employed. However, this behavior may not 

hold for more complex geometries, different FGM constituents and lower 𝑎/ℎ ratios, which can be investigated in 

future studies. 
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