

CILAMCE-2024

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Maceió, Brazil, November 11-14, 2024

Matrix structural analysis of beams on elastic supports:

implementation in Python

Maysa A. R. Curvelo1, Felipe A. V. Bazán1, Jesaías S. Silva1, Paulo C. O. Queiroz1, George F. Azevedo1

1Dept. of Civil Engineering, Federal University of Maranhão

Av. dos Portugueses, 1966, Vila Bacanga, 65080-805, São Luís/MA, Brazil

maysa.ar@discente.ufma.br, felipe.vargas@ufma.br, jesaias.santos@discente.ufma.br, pco.queiroz@ufma.br,

gf.azevedo@ufma.br

Abstract. Technological resources have made it possible to model natural phenomena and engineering problems

more accurately, thus allowing better results. This article presents the computational implementation of a

procedure for matrix structural analysis of beams. Rigid and elastic supports, and continuous elastic base were

considered to represent the contact between the structural model and the external environment. Internal hinges are

also addressed. A computational code was created in Python. The code calculates stiffness matrices and force

vectors of beam elements, which are assembled into a global stiffness matrix and a global force vector, and the

equilibrium equation system is then solved. Results such as nodal displacements and slopes, support reactions, and

internal forces are obtained. It is shown that the presence of elastic supports and elastic foundations can

significantly affect the overall structural behavior of the system. By incorporating these effects into the analysis,

more accurate predictions of the structural response are achieved, leading to safer and more economical solutions.

The article provides a basis for further investigation of the behavior of complex structural systems. Python was

chosen as it provides a versatile and efficient platform for conducting numerical analyses and is suitable for

advances in structural engineering.

Keywords: beam element, elastic support, matrix structural analysis, finite element method, Python.

1 Introduction

It is of crucial importance for the development of civil construction that the modeling of problems is more

aligned with real events, so that mistakes are avoided and the consumption of raw materials and labor is reduced,

resulting in cleaner and more efficient constructions. In current times, the search for excellence has become intense,

due to economic, social, and environmental factors. Technological advancement is crucial to guarantee continuous

improvement in comparison to the use of older methods. The use of computational tools makes it easier to perform

complex calculations, such as those ones involved in numerical methods to solve engineering problems. With this

in mind, this paper proposes the analysis of beam structural models using the matrix structural analysis method [1]

along with a computer program written in Python [2] programming language. Different cases such as beams on a

continuous elastic base and beams with internal hinges are considered. This allows us to obtain more accurate

results and more realistic models considering physical phenomena such as the variability of soil stiffness.

2 Matrix analysis of beam elements

The concepts of matrix analysis of structures were used to develop the code, discretizing the structural beam

elements into smaller elements connected by nodes. The elements are analyzed separately and considered as

Matrix structural analysis of beams on elastic supports: implementation in Python

CILAMCE-2024

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Maceió, Brazil, November 11-14, 2024

characteristics of the materials and applied actions. Each element will have its element stiffness matrix [Kel], eq.

(1), elastic base stiffness matrix [Kbe], elastic bond contribution stiffness matrix [Kve], element equivalent force

vector [Fel], eq. (2), and point load vector [FP], composing the global stiffness matrix [KG] and global force vector

[FG] that represent the structure as a whole. To arrive at the global matrix and vector, the addressing is done through

2i – 1; 2i; 2j – 1; 2j; where i is the initial node and j is the final node. The corresponding row and column values

in the element matrices are added to the global matrix, the same is done with the rows in the element and global

force vectors, point forces are considered only in a single element. Since these are beam elements, they have only

two degrees of freedom, which represent the moment and the shear, hence the matrices having four rows and four

columns [3].

[𝐾𝑒] =

[

12 𝐸 𝐼

𝐿3
6 𝐸 𝐼

𝐿2
−
12 𝐸 𝐼

𝐿3
6 𝐸 𝐼

𝐿2

6 𝐸 𝐼

𝐿2
4 𝐸 𝐼

𝐿
−
6 𝐸 𝐼

𝐿2
2 𝐸 𝐼

𝐿

−
12 𝐸 𝐼

𝐿3
−
6 𝐸 𝐼

𝐿2
12 𝐸 𝐼

𝐿3
−
6 𝐸 𝐼

𝐿2

6 𝐸 𝐼

𝐿2
2 𝐸 𝐼

𝐿
−
6 𝐸 𝐼

𝐿2
4 𝐸 𝐼

𝐿]

(1)

{𝐹𝑒} =

{

7

20
 𝐿 𝑞𝑖 +

3

20
 𝐿 𝑞𝑗

1

20
 𝐿2 𝑞𝑖 +

1

30
 𝐿2 𝑞𝑗

3

20
 𝐿 𝑞𝑖 +

7

20
 𝐿 𝑞𝑗

−
1

30
 𝐿2 𝑞𝑖 −

1

20
 𝐿2 𝑞𝑗}

(2)

The boundary conditions in this work are based on the “zeros and ones technique” [1,4], where the row and

column representing the constraints are set to zero, with the unitary value only on the main diagonal. The nodal

displacements are verified using the notation found in eq. (3). This formulation is based on Hooke's Law and

through its manipulation, the values of the internal forces and support reactions [5] are also found.

 [𝐾𝐺]{𝑈𝐺} = {𝐹𝐺} (3)

In analyzing elements with internal hinges, the matrices used for calculations undergo variations. The

stiffness matrices can be found in Martha [1], for the elastic base matrices and force vectors the deductions were

made by the authors.

3 Methodology

3.1 Creation

Code was developed using a text editor called Brackets [6]. The input file is in JSON format [7] and the entire

program reads input data from this file. The information indicated in the input file is divided into three blocks: the

first block contains the number of elements and the number of nodes; the second one, information about each

element; and the third one, information about each node. The required element information is the element number,

its initial and final nodes, the modulus of elasticity, the moment of inertia, the initial and final values of the

distributed load, the stiffness coefficient of the elastic base, if it exists, and, in the case of hinged element, the

specification about the position of the hinge. The required node information is the node number; nodal coordinates;

constraints (vertical, and rotational); applied loads (vertical, and moment); and stiffness coefficients of the elastic

supports (vertical, and rotational).

There is an outer counting loop that reads and extracts the information contained in each node and stores it

M. A. R. Curvelo, F. A. V. Bazán, J. S. Silva, P. C. O. Queiroz, G. F. Azevedo

CILAMCE-2024

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Maceió, Brazil, November 11-14, 2024

in a dictionary. This information is stored from the entire analyzed structure. The storage is done according to the

variable type and placed in the dictionary using the same addressing scheme of matrices and vectors, with their

keys also in string format. A second, inner counting runs through the elements, subsequently calculating the

matrices and force vectors associated with each element. From there, the program executes the following steps:

obtaining the global stiffness matrix; obtaining the global force vector; contribution of forces and specific moments

in the nodes; contribution of elastic supports; boundary conditions; calculation of nodal displacements; calculation

of internal forces; calculation of rigid support reactions; calculation of elastic support reactions; creation of the

output file in text format.

3.2 Execution

To perform the calculation of the stiffness matrix and force vector of the element, the program first checks

the existence of a hinge in the element and its location. Accordingly, the program calculates the stiffness matrix

of the appropriate element. If an elastic base exists, the elastic base matrix is added to the element stiffness matrix.

The program will execute this function for each existing element and store the results in dictionaries (whose key

is the index in the global stiffness matrix) and lists. The calculation of the element force vector also varies

according to the existence or not of a hinge and is done together in this first step.

After obtaining stiffness matrices and force vectors of all elements, the global stiffness matrix and the global

force vector are obtained from the created addressing keys, adding values at equal keys. The program then adds

the initially stored information about the nodes, applied loads, and elastic supports. Next, the program organizes

the matrix in list format, so that the boundary conditions are applied. Before the application of the boundary

conditions, copies of the lists are made, which is required for future calculations. Finally, the global displacement

vector is calculated by solving eq. (4).

To calculate the internal forces, the individual values of the stiffness matrices and force vectors of each

element are accessed in the lists and dictionaries where they were stored individually, and the formula is

manipulated based on the results obtained from the displacements. The computation of fixed support reactions also

follows the formula mapping, using the values from the matrix and global force vector without any constraints.

The elastic support reactions are obtained by multiplying the elastic support constant by the corresponding

displacement. All results obtained are added to a formatted text file, and implemented in the final part of the

program.

4 Application and Results

The tests were carried out with different beam structures, using all implemented resources, such as elastic

supports, elastic bases, and hinges. Fig. 1 shows an example of a beam on an elastic base. The example was adapted

from Fernandes and Correia [8]. These authors considered discrete elastic supports, whereas a continuous elastic

base is considered in the present work. The input data was deduced from those used by the mentioned work in

order to make a consistent comparison. The results obtained, with discretization into 10 elements, are shown in

Tab. 1, comparable to the reference results.

Figure 1. Example of a beam on an elastic base reproduced in AutoCAD [9]

Table 1. Results obtained by the authors with the program created for a beam on an elastic base

Matrix structural analysis of beams on elastic supports: implementation in Python

CILAMCE-2024

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Maceió, Brazil, November 11-14, 2024

Nodal displacements Reactions of rigid supports

Node Vertical (m) Rotation (rad) Vertical (kN) Moment (kN.m)

1 0 -1.579700e-03 21.06299 0

2 -7.743561e-04 -1.488629e-03 0 0

3 -1.463197e-03 -1.244850e-03 0 0

4 -2.000709e-03 -8.899912e-04 0 0

5 -2.341145e-03 -4.628089e-04 0 0

6 -2.457586e-03 0 0 0

7 -2.341145e-03 4.628089e-04 0 0

8 -2.000709e-03 8.899912e-04 0 0

9 -1.463197e-03 1.244850e-03 0 0

10 -7.743561e-04 1.488629e-03 0 0

11 0 1.579700e-03 21.06299 0

Internal forces

Element QI (kN) QF (kN) MI (kN.m) MF (kN.m)

1 21.06299 16.258476 0 9.314204

2 16.258476 11.822943 9.314204 16.320185

3 11.822943 7.696312 16.320185 21.188785

4 7.696312 3.790675 21.188785 24.05343

5 3.790675 0 24.05343 24.99867

6 0 -3.790675 24.99867 24.05343

7 -3.790675 -7.696312 24.05343 21.188785

8 -7.696312 -11.822943 21.188785 16.320185

9 -11.822943 -16.258476 16.320185 9.314204

10 -16.258476 -21.06299 9.314204 0

Figure 2 illustrates an example consisting of a Gerber beam model, and the results are shown in Tab 2. This

example was taken from Machado Júnior [10] and the results obtained with the developed program were the same

as the reference results.

Figure 2. Gerber beam example reproduced in AutoCAD [9]

Table 2. Results obtained by the authors for Gerber beam with the program created

Nodal displacements Reactions of rigid supports

Node Vertical (m) Rotation (rad) Vertical (kN) Moment (kN.m)

1 0 0 125 340

2 -4.761905e-01 1.101190e-01 0 0

3 -2.440476e-01 1.250000e-01 0 0

4 0 1.041667e-01 195 0

5 1.666667e-01 7.440476e-02 0 0

6 1.160714e-01 -4.761905e-02 0 0

7 0 -3.422619e-02 10 0

Internal forces

Element QI (kN) QF (kN) MI (kN.m) MF (kN.m)

1 125 45 -340 0

2 45 -15 0 30

3 -45 -105 30 -120

4 90 30 -120 0

M. A. R. Curvelo, F. A. V. Bazán, J. S. Silva, P. C. O. Queiroz, G. F. Azevedo

CILAMCE-2024

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Maceió, Brazil, November 11-14, 2024

5 30 30 0 30

6 -10 -10 30 0

5 Conclusions

The program is based on the study of FEM in a more introductory way, facilitating the understanding of the

subject for people with little contact with the numerical analysis method, since when working with elements of a

single dimension the concepts become easier to understand. The use of the Python language, due to its high level,

facilitates the development of codes by people without in-depth knowledge of programming. It also has vast

libraries that facilitate implementation.

Based on the references and results obtained, the program meets the needs for which it was designed.

Regarding future developments, the objectives are the automated discretization of the structural model, as well as

making the input file more intuitive for the user.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the

authorship of this work and that all material that has been herein included as part of the present paper is either the

property (and authorship) of the authors or has the permission of the owners to be included here.

References

[1] L. F. Martha. Análise de estruturas: conceitos e métodos básicos. Elsevier, 2010.

[2] G. Van Rossum and F. L. Drake, “Python reference manual”. Centrum voor Wiskunde en Informatica Amsterdam, 1995.

[3] J. B. Paiva. Introdução ao método dos elementos finitos. EESC/University of São Paulo, 2012.

[4] H. L. Soriano. Análise de estruturas: formulações clássicas. Livraria da Física, 2016.

[5] A. Alves Filho. Elementos Finitos: a base da tecnologia CAE. Érica, 2013.

[6] Brackets Software, Adobe Systems Incorporated, 2023.

[7] JavaScript Object Notation, available at https://www.json.org/json-en.html accessed on 17 May 2023.

[8] A. V. B. Fernandes and V. C. Correia, “Análise de vigas sobre base elástica considerando a interação solo-estrutura”,

Cadernos de Graduação: Ciências Exatas e Tecnológicas, vol. 6, n. 1, pp. 71-92, 2020.

[9] AutoCAD® autodesk®, 2024.

[10] E. F. Machado Junior. Introdução à isostática. EESC/University of São Paulo, 2012.

